Artificial neural network approach for multiphase segmentation of battery electrode nano-CT images

Abstract The segmentation of tomographic images of the battery electrode is a crucial processing step, which will have an additional impact on the results of material characterization and electrochemical simulation. However, manually labeling X-ray CT images (XCT) is time-consuming, and these XCT im...

Full description

Bibliographic Details
Main Authors: Zeliang Su, Etienne Decencière, Tuan-Tu Nguyen, Kaoutar El-Amiry, Vincent De Andrade, Alejandro A. Franco, Arnaud Demortière
Format: Article
Language:English
Published: Nature Portfolio 2022-02-01
Series:npj Computational Materials
Online Access:https://doi.org/10.1038/s41524-022-00709-7
_version_ 1818330565134254080
author Zeliang Su
Etienne Decencière
Tuan-Tu Nguyen
Kaoutar El-Amiry
Vincent De Andrade
Alejandro A. Franco
Arnaud Demortière
author_facet Zeliang Su
Etienne Decencière
Tuan-Tu Nguyen
Kaoutar El-Amiry
Vincent De Andrade
Alejandro A. Franco
Arnaud Demortière
author_sort Zeliang Su
collection DOAJ
description Abstract The segmentation of tomographic images of the battery electrode is a crucial processing step, which will have an additional impact on the results of material characterization and electrochemical simulation. However, manually labeling X-ray CT images (XCT) is time-consuming, and these XCT images are generally difficult to segment with histographical methods. We propose a deep learning approach with an asymmetrical depth encode-decoder convolutional neural network (CNN) for real-world battery material datasets. This network achieves high accuracy while requiring small amounts of labeled data and predicts a volume of billions voxel within few minutes. While applying supervised machine learning for segmenting real-world data, the ground truth is often absent. The results of segmentation are usually qualitatively justified by visual judgement. We try to unravel this fuzzy definition of segmentation quality by identifying the uncertainty due to the human bias diluted in the training data. Further CNN trainings using synthetic data show quantitative impact of such uncertainty on the determination of material’s properties. Nano-XCT datasets of various battery materials have been successfully segmented by training this neural network from scratch. We will also show that applying the transfer learning, which consists of reusing a well-trained network, can improve the accuracy of a similar dataset.
first_indexed 2024-12-13T13:05:58Z
format Article
id doaj.art-f767a38894eb47d3a701adbd70ad92f7
institution Directory Open Access Journal
issn 2057-3960
language English
last_indexed 2024-12-13T13:05:58Z
publishDate 2022-02-01
publisher Nature Portfolio
record_format Article
series npj Computational Materials
spelling doaj.art-f767a38894eb47d3a701adbd70ad92f72022-12-21T23:44:49ZengNature Portfolionpj Computational Materials2057-39602022-02-018111110.1038/s41524-022-00709-7Artificial neural network approach for multiphase segmentation of battery electrode nano-CT imagesZeliang Su0Etienne Decencière1Tuan-Tu Nguyen2Kaoutar El-Amiry3Vincent De Andrade4Alejandro A. Franco5Arnaud Demortière6Laboratoire de Réactivité et Chimie des Solides (LRCS), CNRS UMR 7314, Université de Picardie Jules Verne, Hub de l’Energie, Rue BaudelocqueMINES ParisTech – PSL Research University, CMM, Center for Mathematical MorphologyLaboratoire de Réactivité et Chimie des Solides (LRCS), CNRS UMR 7314, Université de Picardie Jules Verne, Hub de l’Energie, Rue BaudelocqueLaboratoire de Réactivité et Chimie des Solides (LRCS), CNRS UMR 7314, Université de Picardie Jules Verne, Hub de l’Energie, Rue BaudelocqueAdvanced Photon Source, Argonne National LaboratoryLaboratoire de Réactivité et Chimie des Solides (LRCS), CNRS UMR 7314, Université de Picardie Jules Verne, Hub de l’Energie, Rue BaudelocqueLaboratoire de Réactivité et Chimie des Solides (LRCS), CNRS UMR 7314, Université de Picardie Jules Verne, Hub de l’Energie, Rue BaudelocqueAbstract The segmentation of tomographic images of the battery electrode is a crucial processing step, which will have an additional impact on the results of material characterization and electrochemical simulation. However, manually labeling X-ray CT images (XCT) is time-consuming, and these XCT images are generally difficult to segment with histographical methods. We propose a deep learning approach with an asymmetrical depth encode-decoder convolutional neural network (CNN) for real-world battery material datasets. This network achieves high accuracy while requiring small amounts of labeled data and predicts a volume of billions voxel within few minutes. While applying supervised machine learning for segmenting real-world data, the ground truth is often absent. The results of segmentation are usually qualitatively justified by visual judgement. We try to unravel this fuzzy definition of segmentation quality by identifying the uncertainty due to the human bias diluted in the training data. Further CNN trainings using synthetic data show quantitative impact of such uncertainty on the determination of material’s properties. Nano-XCT datasets of various battery materials have been successfully segmented by training this neural network from scratch. We will also show that applying the transfer learning, which consists of reusing a well-trained network, can improve the accuracy of a similar dataset.https://doi.org/10.1038/s41524-022-00709-7
spellingShingle Zeliang Su
Etienne Decencière
Tuan-Tu Nguyen
Kaoutar El-Amiry
Vincent De Andrade
Alejandro A. Franco
Arnaud Demortière
Artificial neural network approach for multiphase segmentation of battery electrode nano-CT images
npj Computational Materials
title Artificial neural network approach for multiphase segmentation of battery electrode nano-CT images
title_full Artificial neural network approach for multiphase segmentation of battery electrode nano-CT images
title_fullStr Artificial neural network approach for multiphase segmentation of battery electrode nano-CT images
title_full_unstemmed Artificial neural network approach for multiphase segmentation of battery electrode nano-CT images
title_short Artificial neural network approach for multiphase segmentation of battery electrode nano-CT images
title_sort artificial neural network approach for multiphase segmentation of battery electrode nano ct images
url https://doi.org/10.1038/s41524-022-00709-7
work_keys_str_mv AT zeliangsu artificialneuralnetworkapproachformultiphasesegmentationofbatteryelectrodenanoctimages
AT etiennedecenciere artificialneuralnetworkapproachformultiphasesegmentationofbatteryelectrodenanoctimages
AT tuantunguyen artificialneuralnetworkapproachformultiphasesegmentationofbatteryelectrodenanoctimages
AT kaoutarelamiry artificialneuralnetworkapproachformultiphasesegmentationofbatteryelectrodenanoctimages
AT vincentdeandrade artificialneuralnetworkapproachformultiphasesegmentationofbatteryelectrodenanoctimages
AT alejandroafranco artificialneuralnetworkapproachformultiphasesegmentationofbatteryelectrodenanoctimages
AT arnauddemortiere artificialneuralnetworkapproachformultiphasesegmentationofbatteryelectrodenanoctimages