Topological phases of quasi-one-dimensional fermionic atoms with a synthetic gauge field

We theoretically investigate the effect of intertube tunneling in topological superfluid phases of a quasi-one-dimensional Fermi gas with a Rashba-type spin–orbit interaction. It is shown that the effective Hamiltonian is analogous to that of a nanowire topological superconductor with multibands. Us...

Full description

Bibliographic Details
Main Authors: Takeshi Mizushima, Masatoshi Sato
Format: Article
Language:English
Published: IOP Publishing 2013-01-01
Series:New Journal of Physics
Online Access:https://doi.org/10.1088/1367-2630/15/7/075010
Description
Summary:We theoretically investigate the effect of intertube tunneling in topological superfluid phases of a quasi-one-dimensional Fermi gas with a Rashba-type spin–orbit interaction. It is shown that the effective Hamiltonian is analogous to that of a nanowire topological superconductor with multibands. Using a hidden mirror symmetry in the system, we introduce a new topological number that ensures the existence of non-Abelian Majorana zero modes even in the presence of intertube tunneling. It is demonstrated from the full numerical calculation of self-consistent equations that some of the Majorana modes survive against the intertube tunneling, when the number of one-dimensional tubes is odd in the y -direction. We also discuss a generalization of our consideration to nanowire topological superconductors.
ISSN:1367-2630