Maximum principles, Liouville-type theorems and symmetry results for a general class of quasilinear anisotropic equations

This paper is concerned with a general class of quasilinear anisotropic equations. We first derive some maximum principles for two appropriate P-functions, in the sense of Payne (see the book of Sperb [18]). These maximum principles are then employed to obtain a Liouville-type result and a Serrin–We...

Full description

Bibliographic Details
Main Authors: Barbu Luminita, Enache Cristian
Format: Article
Language:English
Published: De Gruyter 2016-11-01
Series:Advances in Nonlinear Analysis
Subjects:
Online Access:https://doi.org/10.1515/anona-2015-0127
_version_ 1818581860896210944
author Barbu Luminita
Enache Cristian
author_facet Barbu Luminita
Enache Cristian
author_sort Barbu Luminita
collection DOAJ
description This paper is concerned with a general class of quasilinear anisotropic equations. We first derive some maximum principles for two appropriate P-functions, in the sense of Payne (see the book of Sperb [18]). These maximum principles are then employed to obtain a Liouville-type result and a Serrin–Weinberger-type symmetry result.
first_indexed 2024-12-16T07:40:13Z
format Article
id doaj.art-f78150d4497a4f67b7b2be1f0ba9f079
institution Directory Open Access Journal
issn 2191-9496
2191-950X
language English
last_indexed 2024-12-16T07:40:13Z
publishDate 2016-11-01
publisher De Gruyter
record_format Article
series Advances in Nonlinear Analysis
spelling doaj.art-f78150d4497a4f67b7b2be1f0ba9f0792022-12-21T22:39:06ZengDe GruyterAdvances in Nonlinear Analysis2191-94962191-950X2016-11-015439540510.1515/anona-2015-0127Maximum principles, Liouville-type theorems and symmetry results for a general class of quasilinear anisotropic equationsBarbu Luminita0Enache Cristian1Department of Mathematics, Ovidius University, Constanta 900 527, Romania“Simion Stoilow” Institute of Mathematics of the Romanian Academy, 010702 Bucharest, RomaniaThis paper is concerned with a general class of quasilinear anisotropic equations. We first derive some maximum principles for two appropriate P-functions, in the sense of Payne (see the book of Sperb [18]). These maximum principles are then employed to obtain a Liouville-type result and a Serrin–Weinberger-type symmetry result.https://doi.org/10.1515/anona-2015-0127maximum principlesanisotropic equationsliouville theoremssymmetrywulff shapes35b50 35j25 35p15 70h25
spellingShingle Barbu Luminita
Enache Cristian
Maximum principles, Liouville-type theorems and symmetry results for a general class of quasilinear anisotropic equations
Advances in Nonlinear Analysis
maximum principles
anisotropic equations
liouville theorems
symmetry
wulff shapes
35b50
35j25
35p15
70h25
title Maximum principles, Liouville-type theorems and symmetry results for a general class of quasilinear anisotropic equations
title_full Maximum principles, Liouville-type theorems and symmetry results for a general class of quasilinear anisotropic equations
title_fullStr Maximum principles, Liouville-type theorems and symmetry results for a general class of quasilinear anisotropic equations
title_full_unstemmed Maximum principles, Liouville-type theorems and symmetry results for a general class of quasilinear anisotropic equations
title_short Maximum principles, Liouville-type theorems and symmetry results for a general class of quasilinear anisotropic equations
title_sort maximum principles liouville type theorems and symmetry results for a general class of quasilinear anisotropic equations
topic maximum principles
anisotropic equations
liouville theorems
symmetry
wulff shapes
35b50
35j25
35p15
70h25
url https://doi.org/10.1515/anona-2015-0127
work_keys_str_mv AT barbuluminita maximumprinciplesliouvilletypetheoremsandsymmetryresultsforageneralclassofquasilinearanisotropicequations
AT enachecristian maximumprinciplesliouvilletypetheoremsandsymmetryresultsforageneralclassofquasilinearanisotropicequations