Depletion of <i>SNORA33</i> Abolishes ψ of 28S-U4966 and Affects the Ribosome Translational Apparatus

Eukaryotic ribosomes are complex molecular nanomachines translating genetic information from mRNAs into proteins. There is natural heterogeneity in ribosome composition. The pseudouridylation (ψ) of ribosomal RNAs (rRNAs) is one of the key sources of ribosome heterogeneity. Nevertheless, the functio...

Full description

Bibliographic Details
Main Authors: Alzbeta Chabronova, Guus van den Akker, Bas A. C. Housmans, Marjolein M. J. Caron, Andy Cremers, Don A. M. Surtel, Mandy J. Peffers, Lodewijk W. van Rhijn, Virginie Marchand, Yuri Motorin, Tim J. M. Welting
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/24/16/12578
_version_ 1797584525110280192
author Alzbeta Chabronova
Guus van den Akker
Bas A. C. Housmans
Marjolein M. J. Caron
Andy Cremers
Don A. M. Surtel
Mandy J. Peffers
Lodewijk W. van Rhijn
Virginie Marchand
Yuri Motorin
Tim J. M. Welting
author_facet Alzbeta Chabronova
Guus van den Akker
Bas A. C. Housmans
Marjolein M. J. Caron
Andy Cremers
Don A. M. Surtel
Mandy J. Peffers
Lodewijk W. van Rhijn
Virginie Marchand
Yuri Motorin
Tim J. M. Welting
author_sort Alzbeta Chabronova
collection DOAJ
description Eukaryotic ribosomes are complex molecular nanomachines translating genetic information from mRNAs into proteins. There is natural heterogeneity in ribosome composition. The pseudouridylation (ψ) of ribosomal RNAs (rRNAs) is one of the key sources of ribosome heterogeneity. Nevertheless, the functional consequences of ψ-based ribosome heterogeneity and its relevance for human disease are yet to be understood. Using HydraPsiSeq and a chronic disease model of non-osteoarthritic primary human articular chondrocytes exposed to osteoarthritic synovial fluid, we demonstrated that the disease microenvironment is capable of instigating site-specific changes in rRNA ψ profiles. To investigate one of the identified differential rRNA ψ sites (28S-ψ4966), we generated <i>SNORA22</i> and <i>SNORA33</i> KO SW1353 cell pools using LentiCRISPRv2/Cas9 and evaluated the ribosome translational capacity by <sup>35</sup>S-Met/Cys incorporation, assessed the mode of translation initiation and ribosomal fidelity using dual luciferase reporters, and assessed cellular and ribosomal proteomes by LC-MS/MS. We uncovered that the depletion of <i>SNORA33</i>, but not <i>SNORA22</i>, reduced 28S-ψ4966 levels. The resulting loss of 28S-ψ4966 affected ribosomal protein composition and function and led to specific changes in the cellular proteome. Overall, our pioneering findings demonstrate that cells dynamically respond to disease-relevant changes in their environment by altering their rRNA pseudouridylation profiles, with consequences for ribosome function and the cellular proteome relevant to human disease.
first_indexed 2024-03-10T23:53:54Z
format Article
id doaj.art-f79530137c2145ee8eaffd0161a54d5d
institution Directory Open Access Journal
issn 1661-6596
1422-0067
language English
last_indexed 2024-03-10T23:53:54Z
publishDate 2023-08-01
publisher MDPI AG
record_format Article
series International Journal of Molecular Sciences
spelling doaj.art-f79530137c2145ee8eaffd0161a54d5d2023-11-19T01:25:21ZengMDPI AGInternational Journal of Molecular Sciences1661-65961422-00672023-08-0124161257810.3390/ijms241612578Depletion of <i>SNORA33</i> Abolishes ψ of 28S-U4966 and Affects the Ribosome Translational ApparatusAlzbeta Chabronova0Guus van den Akker1Bas A. C. Housmans2Marjolein M. J. Caron3Andy Cremers4Don A. M. Surtel5Mandy J. Peffers6Lodewijk W. van Rhijn7Virginie Marchand8Yuri Motorin9Tim J. M. Welting10Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 HX Maastricht, The NetherlandsLaboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 HX Maastricht, The NetherlandsLaboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 HX Maastricht, The NetherlandsLaboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 HX Maastricht, The NetherlandsLaboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 HX Maastricht, The NetherlandsLaboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 HX Maastricht, The NetherlandsInstitute of Life Course and Medical Sciences, University of Liverpool, Liverpool L8 7TX, UKLaboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 HX Maastricht, The NetherlandsUAR2008 IBSLor CNRS-INSERM-Université de Lorraine, F54000 Nancy, FranceUAR2008 IBSLor CNRS-INSERM-Université de Lorraine, F54000 Nancy, FranceLaboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 HX Maastricht, The NetherlandsEukaryotic ribosomes are complex molecular nanomachines translating genetic information from mRNAs into proteins. There is natural heterogeneity in ribosome composition. The pseudouridylation (ψ) of ribosomal RNAs (rRNAs) is one of the key sources of ribosome heterogeneity. Nevertheless, the functional consequences of ψ-based ribosome heterogeneity and its relevance for human disease are yet to be understood. Using HydraPsiSeq and a chronic disease model of non-osteoarthritic primary human articular chondrocytes exposed to osteoarthritic synovial fluid, we demonstrated that the disease microenvironment is capable of instigating site-specific changes in rRNA ψ profiles. To investigate one of the identified differential rRNA ψ sites (28S-ψ4966), we generated <i>SNORA22</i> and <i>SNORA33</i> KO SW1353 cell pools using LentiCRISPRv2/Cas9 and evaluated the ribosome translational capacity by <sup>35</sup>S-Met/Cys incorporation, assessed the mode of translation initiation and ribosomal fidelity using dual luciferase reporters, and assessed cellular and ribosomal proteomes by LC-MS/MS. We uncovered that the depletion of <i>SNORA33</i>, but not <i>SNORA22</i>, reduced 28S-ψ4966 levels. The resulting loss of 28S-ψ4966 affected ribosomal protein composition and function and led to specific changes in the cellular proteome. Overall, our pioneering findings demonstrate that cells dynamically respond to disease-relevant changes in their environment by altering their rRNA pseudouridylation profiles, with consequences for ribosome function and the cellular proteome relevant to human disease.https://www.mdpi.com/1422-0067/24/16/12578ribosomal RNA28Sepitranscriptomeribosomechondrocytesosteoarthritis
spellingShingle Alzbeta Chabronova
Guus van den Akker
Bas A. C. Housmans
Marjolein M. J. Caron
Andy Cremers
Don A. M. Surtel
Mandy J. Peffers
Lodewijk W. van Rhijn
Virginie Marchand
Yuri Motorin
Tim J. M. Welting
Depletion of <i>SNORA33</i> Abolishes ψ of 28S-U4966 and Affects the Ribosome Translational Apparatus
International Journal of Molecular Sciences
ribosomal RNA
28S
epitranscriptome
ribosome
chondrocytes
osteoarthritis
title Depletion of <i>SNORA33</i> Abolishes ψ of 28S-U4966 and Affects the Ribosome Translational Apparatus
title_full Depletion of <i>SNORA33</i> Abolishes ψ of 28S-U4966 and Affects the Ribosome Translational Apparatus
title_fullStr Depletion of <i>SNORA33</i> Abolishes ψ of 28S-U4966 and Affects the Ribosome Translational Apparatus
title_full_unstemmed Depletion of <i>SNORA33</i> Abolishes ψ of 28S-U4966 and Affects the Ribosome Translational Apparatus
title_short Depletion of <i>SNORA33</i> Abolishes ψ of 28S-U4966 and Affects the Ribosome Translational Apparatus
title_sort depletion of i snora33 i abolishes ψ of 28s u4966 and affects the ribosome translational apparatus
topic ribosomal RNA
28S
epitranscriptome
ribosome
chondrocytes
osteoarthritis
url https://www.mdpi.com/1422-0067/24/16/12578
work_keys_str_mv AT alzbetachabronova depletionofisnora33iabolishespsof28su4966andaffectstheribosometranslationalapparatus
AT guusvandenakker depletionofisnora33iabolishespsof28su4966andaffectstheribosometranslationalapparatus
AT basachousmans depletionofisnora33iabolishespsof28su4966andaffectstheribosometranslationalapparatus
AT marjoleinmjcaron depletionofisnora33iabolishespsof28su4966andaffectstheribosometranslationalapparatus
AT andycremers depletionofisnora33iabolishespsof28su4966andaffectstheribosometranslationalapparatus
AT donamsurtel depletionofisnora33iabolishespsof28su4966andaffectstheribosometranslationalapparatus
AT mandyjpeffers depletionofisnora33iabolishespsof28su4966andaffectstheribosometranslationalapparatus
AT lodewijkwvanrhijn depletionofisnora33iabolishespsof28su4966andaffectstheribosometranslationalapparatus
AT virginiemarchand depletionofisnora33iabolishespsof28su4966andaffectstheribosometranslationalapparatus
AT yurimotorin depletionofisnora33iabolishespsof28su4966andaffectstheribosometranslationalapparatus
AT timjmwelting depletionofisnora33iabolishespsof28su4966andaffectstheribosometranslationalapparatus