On the existence of periodic solutions to second order Hamiltonian systems

In this paper, the existence of periodic solutions to the second order Hamiltonian systems is investigated. By introducing a new growth condition which generalizes the Ambrosetti–Rabinowitz condition, we prove a existence result of nontrivial $T$-periodic solution via the variational methods. Our re...

Full description

Bibliographic Details
Main Authors: Xiao-Feng Ke, Jia-Feng Liao
Format: Article
Language:English
Published: University of Szeged 2022-07-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=9889
Description
Summary:In this paper, the existence of periodic solutions to the second order Hamiltonian systems is investigated. By introducing a new growth condition which generalizes the Ambrosetti–Rabinowitz condition, we prove a existence result of nontrivial $T$-periodic solution via the variational methods. Our result is new because it can deal with not only the superquadratic case, but also the anisotropic case which allows the potential to be superquadratic growth in only one direction and asymptotically quadratic growth in other directions.
ISSN:1417-3875