Missing Burns in the High Northern Latitudes: The Case for Regionally Focused Burned Area Products

Global estimates of burned areas, enabled by the wide-open access to the standard data products from the Moderate Resolution Imaging Spectroradiometer (MODIS), are heavily relied on by scientists and managers studying issues related to wildfire occurrence and its worldwide consequences. While these...

Full description

Bibliographic Details
Main Authors: Dong Chen, Varada Shevade, Allison Baer, Tatiana V. Loboda
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/13/20/4145
_version_ 1827678638553694208
author Dong Chen
Varada Shevade
Allison Baer
Tatiana V. Loboda
author_facet Dong Chen
Varada Shevade
Allison Baer
Tatiana V. Loboda
author_sort Dong Chen
collection DOAJ
description Global estimates of burned areas, enabled by the wide-open access to the standard data products from the Moderate Resolution Imaging Spectroradiometer (MODIS), are heavily relied on by scientists and managers studying issues related to wildfire occurrence and its worldwide consequences. While these datasets, particularly the MODIS MCD64A1 product, have fundamentally improved our understanding of wildfire regimes at the global scale, their performance may be less reliable in certain regions due to a series of region- or ecosystem-specific challenges. Previous studies have indicated that global burned area products tend to underestimate the extent of the burned area within some parts of the boreal domain. Despite this, global products are still being regularly used by research activities and management efforts in the northern regions, likely due to a lack of understanding of the spatial scale of their Arctic-specific limitations, as well as an absence of more reliable alternative products. In this study, we evaluated the performance of two widely used global burned area products, MCD64A1 and FireCCI51, in the circumpolar boreal forests and tundra between 2001 and 2015. Our two-step evaluation shows that MCD64A1 has high commission and omission errors in mapping burned areas in the boreal forests and tundra regions in North America. The omission error overshadows the commission error, leading to MCD64A1 considerably underestimating burned areas in these high northern latitude domains. Based on our estimation, MCD64A1 missed nearly half the total burned areas in the Alaskan and Canadian boreal forests and the tundra during the 15-year period, amounting to an area (74,768 km<sup>2</sup>) that is equivalent to the land area of the United States state of South Carolina. While the FireCCI51 product performs much better than MCD64A1 in terms of commission error, we found that it also missed about 40% of burned areas in North America north of 60° N between 2001 and 2015. Our intercomparison of MCD64A1 and FireCCI51 with a regionally adapted MODIS-based Arctic Boreal Burned Area (ABBA) shows that the latter outperforms both MCD64A1 and FireCCI51 by a large margin, particularly in terms of omission error, and thus delivers a considerably more accurate and consistent estimate of fire activity in the high northern latitudes. Considering the fact that boreal forests and tundra represent the largest carbon pool on Earth and that wildfire is the dominant disturbance agent in these ecosystems, our study presents a strong case for regional burned area products like ABBA to be included in future Earth system models as the critical input for understanding wildfires’ impacts on global carbon cycling and energy budget.
first_indexed 2024-03-10T06:13:53Z
format Article
id doaj.art-f7ac8918e4c34e3aad8946128ae136c5
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-03-10T06:13:53Z
publishDate 2021-10-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-f7ac8918e4c34e3aad8946128ae136c52023-11-22T19:54:51ZengMDPI AGRemote Sensing2072-42922021-10-011320414510.3390/rs13204145Missing Burns in the High Northern Latitudes: The Case for Regionally Focused Burned Area ProductsDong Chen0Varada Shevade1Allison Baer2Tatiana V. Loboda3Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USADepartment of Geographical Sciences, University of Maryland, College Park, MD 20742, USADepartment of Geographical Sciences, University of Maryland, College Park, MD 20742, USADepartment of Geographical Sciences, University of Maryland, College Park, MD 20742, USAGlobal estimates of burned areas, enabled by the wide-open access to the standard data products from the Moderate Resolution Imaging Spectroradiometer (MODIS), are heavily relied on by scientists and managers studying issues related to wildfire occurrence and its worldwide consequences. While these datasets, particularly the MODIS MCD64A1 product, have fundamentally improved our understanding of wildfire regimes at the global scale, their performance may be less reliable in certain regions due to a series of region- or ecosystem-specific challenges. Previous studies have indicated that global burned area products tend to underestimate the extent of the burned area within some parts of the boreal domain. Despite this, global products are still being regularly used by research activities and management efforts in the northern regions, likely due to a lack of understanding of the spatial scale of their Arctic-specific limitations, as well as an absence of more reliable alternative products. In this study, we evaluated the performance of two widely used global burned area products, MCD64A1 and FireCCI51, in the circumpolar boreal forests and tundra between 2001 and 2015. Our two-step evaluation shows that MCD64A1 has high commission and omission errors in mapping burned areas in the boreal forests and tundra regions in North America. The omission error overshadows the commission error, leading to MCD64A1 considerably underestimating burned areas in these high northern latitude domains. Based on our estimation, MCD64A1 missed nearly half the total burned areas in the Alaskan and Canadian boreal forests and the tundra during the 15-year period, amounting to an area (74,768 km<sup>2</sup>) that is equivalent to the land area of the United States state of South Carolina. While the FireCCI51 product performs much better than MCD64A1 in terms of commission error, we found that it also missed about 40% of burned areas in North America north of 60° N between 2001 and 2015. Our intercomparison of MCD64A1 and FireCCI51 with a regionally adapted MODIS-based Arctic Boreal Burned Area (ABBA) shows that the latter outperforms both MCD64A1 and FireCCI51 by a large margin, particularly in terms of omission error, and thus delivers a considerably more accurate and consistent estimate of fire activity in the high northern latitudes. Considering the fact that boreal forests and tundra represent the largest carbon pool on Earth and that wildfire is the dominant disturbance agent in these ecosystems, our study presents a strong case for regional burned area products like ABBA to be included in future Earth system models as the critical input for understanding wildfires’ impacts on global carbon cycling and energy budget.https://www.mdpi.com/2072-4292/13/20/4145wildfiredisturbanceArcticboreal foreststundraMODIS
spellingShingle Dong Chen
Varada Shevade
Allison Baer
Tatiana V. Loboda
Missing Burns in the High Northern Latitudes: The Case for Regionally Focused Burned Area Products
Remote Sensing
wildfire
disturbance
Arctic
boreal forests
tundra
MODIS
title Missing Burns in the High Northern Latitudes: The Case for Regionally Focused Burned Area Products
title_full Missing Burns in the High Northern Latitudes: The Case for Regionally Focused Burned Area Products
title_fullStr Missing Burns in the High Northern Latitudes: The Case for Regionally Focused Burned Area Products
title_full_unstemmed Missing Burns in the High Northern Latitudes: The Case for Regionally Focused Burned Area Products
title_short Missing Burns in the High Northern Latitudes: The Case for Regionally Focused Burned Area Products
title_sort missing burns in the high northern latitudes the case for regionally focused burned area products
topic wildfire
disturbance
Arctic
boreal forests
tundra
MODIS
url https://www.mdpi.com/2072-4292/13/20/4145
work_keys_str_mv AT dongchen missingburnsinthehighnorthernlatitudesthecaseforregionallyfocusedburnedareaproducts
AT varadashevade missingburnsinthehighnorthernlatitudesthecaseforregionallyfocusedburnedareaproducts
AT allisonbaer missingburnsinthehighnorthernlatitudesthecaseforregionallyfocusedburnedareaproducts
AT tatianavloboda missingburnsinthehighnorthernlatitudesthecaseforregionallyfocusedburnedareaproducts