Summary: | The Hall effect is the generation of a transverse electromotive force in a sample carrying an electric current and exposed to perpendicular magnetic field. Depending on the sample geometry, this electromotive force may cause the appearance of a transverse voltage across the sample, or a current deflection in the sample. The generation of this transverse voltage, called Hall voltage, is the generally known way for the of the appearance of the Hall effect.The resistance of this sample increasing under influence of the magnetic field, this called magnetoresistance effect. Both the Hall effect and the magnetoresistance effect belong to the more general class of phenomena called galvanomagnetic effects. Galvamomagnetic effects are the manifestations of charge transport phenomena in condensed matter in the presence of a magnetic field.The sensor applications of Hall effect became important only with the development of semiconductor technology. For one thing, the Hall effect is only strong enough for this propose in some semiconductors. Therefore, the first Hall effect magnetic sensor became commercially available in the mid 1950s, a few year after the discovery of high-mobility compound semiconductors. Our goal in this paper is to understand the physically background of the Hall and the magnetoresistance effects. We are going to discuss the effect of parameters in those phenomena and how we can make better our technology to improve better efficiency.
|