Short Circuit and Recovery Time Tests in a helical bifilar R-SFCL module

Abstract Superconducting Fault Current Limiter (SFCL) modules with distinct arrangements have been investigated, seeking design and performance enhancements. In this context, this work aims to propose a design for resistive SFCL (R-SFCL) modules, using RE-Ba-Cu-O high-temperature superconducting tap...

Full description

Bibliographic Details
Main Authors: Luís M. M. Rocha, Alexander Polasek, Guilherme G. Sotelo, D. H. N. Dias, Bruno S. M. C. Borba, David P. Fernandes
Format: Article
Language:English
Published: Sociedade Brasileira de Microondas e Optoeletrônica; Sociedade Brasileira de Eletromagnetismo 2021-06-01
Series:Journal of Microwaves, Optoelectronics and Electromagnetic Applications
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742021000200372&tlng=en
Description
Summary:Abstract Superconducting Fault Current Limiter (SFCL) modules with distinct arrangements have been investigated, seeking design and performance enhancements. In this context, this work aims to propose a design for resistive SFCL (R-SFCL) modules, using RE-Ba-Cu-O high-temperature superconducting tapes (HTS) wound on an alternative support material. An R-SFCL bench prototype was designed for 400 A and 500 V. Two pieces of 2G tapes, arranged in a bifilar antiparallel configuration were wound on Acrylonitrile Butadiene Styrene (ABS) tubes, which were made by means of a 3D printer. During the experiments, the SFCL was immersed in an open bath cryostat with liquid nitrogen and several measurements were carried out. The average limited current is about three times lower than the prospective one. To test the SFCL recovery time, the following procedure was adopted: The fault is induced during three cycles, and after, the current is reduced to zero. The SFCL is reconnected after some time considering that the fault was extinct, and the voltage level returned to normal operation. The results showed promising levels of limitation and recovery time for further developments.
ISSN:2179-1074