Approximate property of a functional equation with a general involution
In this paper, we prove the Hyers-Ulam stability of the functional equation f(x + y, z + w) + f(x + σ(y),z + τ(w)) = 2f(x, z) + 2f(y, w), where σ, τ are involutions.
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2018-11-01
|
Series: | Demonstratio Mathematica |
Subjects: | |
Online Access: | http://www.degruyter.com/view/j/dema.2018.51.issue-1/dema-2018-0021/dema-2018-0021.xml?format=INT |
_version_ | 1831691882703355904 |
---|---|
author | Park Won-Gil Bae Jae-Hyeong |
author_facet | Park Won-Gil Bae Jae-Hyeong |
author_sort | Park Won-Gil |
collection | DOAJ |
description | In this paper, we prove the Hyers-Ulam stability of the functional equation f(x + y, z + w) + f(x + σ(y),z + τ(w)) = 2f(x, z) + 2f(y, w), where σ, τ are involutions. |
first_indexed | 2024-12-20T11:38:44Z |
format | Article |
id | doaj.art-f7d427a8285f46d8a408aa395b466063 |
institution | Directory Open Access Journal |
issn | 2391-4661 |
language | English |
last_indexed | 2024-12-20T11:38:44Z |
publishDate | 2018-11-01 |
publisher | De Gruyter |
record_format | Article |
series | Demonstratio Mathematica |
spelling | doaj.art-f7d427a8285f46d8a408aa395b4660632022-12-21T19:42:03ZengDe GruyterDemonstratio Mathematica2391-46612018-11-0151130430810.1515/dema-2018-0021dema-2018-0021Approximate property of a functional equation with a general involutionPark Won-Gil0Bae Jae-Hyeong1Department of Mathematics Education, College of Education, Mokwon University,Daejeon, Republic of KoreaHumanitas College, Kyung Hee University,Yongin, Republic of KoreaIn this paper, we prove the Hyers-Ulam stability of the functional equation f(x + y, z + w) + f(x + σ(y),z + τ(w)) = 2f(x, z) + 2f(y, w), where σ, τ are involutions.http://www.degruyter.com/view/j/dema.2018.51.issue-1/dema-2018-0021/dema-2018-0021.xml?format=INTapproximationinvolutionBanach space |
spellingShingle | Park Won-Gil Bae Jae-Hyeong Approximate property of a functional equation with a general involution Demonstratio Mathematica approximation involution Banach space |
title | Approximate property of a functional equation with a general involution |
title_full | Approximate property of a functional equation with a general involution |
title_fullStr | Approximate property of a functional equation with a general involution |
title_full_unstemmed | Approximate property of a functional equation with a general involution |
title_short | Approximate property of a functional equation with a general involution |
title_sort | approximate property of a functional equation with a general involution |
topic | approximation involution Banach space |
url | http://www.degruyter.com/view/j/dema.2018.51.issue-1/dema-2018-0021/dema-2018-0021.xml?format=INT |
work_keys_str_mv | AT parkwongil approximatepropertyofafunctionalequationwithageneralinvolution AT baejaehyeong approximatepropertyofafunctionalequationwithageneralinvolution |