The inequality of Milne and its converse

<p/> <p>We prove: Let <inline-formula><graphic file="1029-242X-2002-241023-i1.gif"/></inline-formula> be real numbers with <inline-formula><graphic file="1029-242X-2002-241023-i2.gif"/></inline-formula>. Then we have for all real nu...

Full description

Bibliographic Details
Main Authors: Kova&#269;ec Alexander, Alzer Horst
Format: Article
Language:English
Published: SpringerOpen 2002-01-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://www.journalofinequalitiesandapplications.com/content/7/241023
Description
Summary:<p/> <p>We prove: Let <inline-formula><graphic file="1029-242X-2002-241023-i1.gif"/></inline-formula> be real numbers with <inline-formula><graphic file="1029-242X-2002-241023-i2.gif"/></inline-formula>. Then we have for all real numbers <inline-formula><graphic file="1029-242X-2002-241023-i3.gif"/></inline-formula>: <inline-formula><graphic file="1029-242X-2002-241023-i4.gif"/></inline-formula> with the best possible exponents <inline-formula><graphic file="1029-242X-2002-241023-i5.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2002-241023-i6.gif"/></inline-formula>. The left-hand side of (0.1) with <inline-formula><graphic file="1029-242X-2002-241023-i7.gif"/></inline-formula> is a discrete version of an integral inequality due to E.A. Milne [1]. Moreover, we present a matrix analogue of (0.1).</p>
ISSN:1025-5834
1029-242X