Methodology for the Path Definition in Multi-Layer Gas Metal Arc Welding (GMAW)

The reconstruction of the geometry of weld-deposited materials plays an important role in the control of the torch path in GMAW. This technique, which is classified as a direct energy deposition technology, is experiencing a new emergence due to its use in welding and additive manufacturing. Usually...

Full description

Bibliographic Details
Main Authors: David Curiel, Fernando Veiga, Alfredo Suarez, Pedro Villanueva
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/2/268
Description
Summary:The reconstruction of the geometry of weld-deposited materials plays an important role in the control of the torch path in GMAW. This technique, which is classified as a direct energy deposition technology, is experiencing a new emergence due to its use in welding and additive manufacturing. Usually, the torch path is determined by computerised fabrication tools, but these software tools do not consider the geometrical changes along the case during the process. The aim of this work is to adaptively define the trajectories between layers by analysing the geometry and symmetry of previously deposited layers. The novelty of this work is the integration of a profiling laser coupled to the production system, which scans the deposited layers. Once the layer is scanned, the geometry of the deposited bead can be reconstructed and the symmetry in the geometry and a continuous trajectory can be determined. A wall was fabricated under demanding deposition conditions, and a surface quality of around 100 microns and mechanical properties in line with those previously reported in the literature are observed.
ISSN:2073-8994