Confidence Levels-Based <italic>p</italic>, <italic>q</italic>-Quasirung Orthopair Fuzzy Operators and Its Applications to Criteria Group Decision Making Problems

The <inline-formula> <tex-math notation="LaTeX">$p,q$ </tex-math></inline-formula>-quasirung orthopair fuzzy (<inline-formula> <tex-math notation="LaTeX">$p,q$ </tex-math></inline-formula>-QOF) set, an extension of the <inline-fo...

Ամբողջական նկարագրություն

Մատենագիտական մանրամասներ
Հիմնական հեղինակներ: Muhammad Rahim, Kamal Shah, Thabet Abdeljawad, Maggie Aphane, Alhanouf Alburaikan, Hamiden Abd El-Wahed Khalifa
Ձևաչափ: Հոդված
Լեզու:English
Հրապարակվել է: IEEE 2023-01-01
Շարք:IEEE Access
Խորագրեր:
Առցանց հասանելիություն:https://ieeexplore.ieee.org/document/10271277/
_version_ 1827794614839410688
author Muhammad Rahim
Kamal Shah
Thabet Abdeljawad
Maggie Aphane
Alhanouf Alburaikan
Hamiden Abd El-Wahed Khalifa
author_facet Muhammad Rahim
Kamal Shah
Thabet Abdeljawad
Maggie Aphane
Alhanouf Alburaikan
Hamiden Abd El-Wahed Khalifa
author_sort Muhammad Rahim
collection DOAJ
description The <inline-formula> <tex-math notation="LaTeX">$p,q$ </tex-math></inline-formula>-quasirung orthopair fuzzy (<inline-formula> <tex-math notation="LaTeX">$p,q$ </tex-math></inline-formula>-QOF) set, an extension of the <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula>-rung orthopair fuzzy set (<inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula>-ROF) set, offers a more comprehensive approach to information representation, adept at managing data uncertainties. Unlike the restrictive conditions of <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula>-ROF set, which require that the sum of <inline-formula> <tex-math notation="LaTeX">$q^{th}$ </tex-math></inline-formula> power of membership (<inline-formula> <tex-math notation="LaTeX">$\eta$ </tex-math></inline-formula>) and non-membership function (<inline-formula> <tex-math notation="LaTeX">$\vartheta$ </tex-math></inline-formula>) must not exceed one (<inline-formula> <tex-math notation="LaTeX">$\eta ^{q}+\vartheta ^{q}\preccurlyeq 1$ </tex-math></inline-formula>), <inline-formula> <tex-math notation="LaTeX">$p,q$ </tex-math></inline-formula>-QOFS relaxes these limitations. Here, the combined value of the <inline-formula> <tex-math notation="LaTeX">$p^{th}$ </tex-math></inline-formula> power of membership and <inline-formula> <tex-math notation="LaTeX">$q^{th}$ </tex-math></inline-formula> power of non-membership is confined within one i.e., <inline-formula> <tex-math notation="LaTeX">$\eta ^{p}+\vartheta ^{q} \preccurlyeq 1$ </tex-math></inline-formula>, under the conditions <inline-formula> <tex-math notation="LaTeX">$p,q \succcurlyeq 1$ </tex-math></inline-formula> and various relationships between <inline-formula> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">$p=q$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$p\succ q$ </tex-math></inline-formula> or <inline-formula> <tex-math notation="LaTeX">$p\prec q$ </tex-math></inline-formula>). This study explores leveraging confidence levels tied to each <inline-formula> <tex-math notation="LaTeX">$p,q$ </tex-math></inline-formula>-quasirung orthopair fuzzy number (<inline-formula> <tex-math notation="LaTeX">$p,q$ </tex-math></inline-formula>&#x2013;QOFN) to devise a set of averaging and geometric aggregation operators (AOs). These operators effectively combine rating values from distinct criteria, as presented by decision-makers. By harnessing these operators, a novel approach for multi-criteria group decision-making (MCGDM) is formulated, well-suited to resolving real-life decision-making (DM) challenges. An illustrative example underscores the method&#x2019;s efficacy and validity. Finally, a comparative assessment against existing methods highlights the superior performance of the proposed approach.
first_indexed 2024-03-11T18:36:26Z
format Article
id doaj.art-f7f531c57cbe4421aed2b612a07fe867
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-03-11T18:36:26Z
publishDate 2023-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-f7f531c57cbe4421aed2b612a07fe8672023-10-12T23:01:33ZengIEEEIEEE Access2169-35362023-01-011110998310999610.1109/ACCESS.2023.332187610271277Confidence Levels-Based <italic>p</italic>, <italic>q</italic>-Quasirung Orthopair Fuzzy Operators and Its Applications to Criteria Group Decision Making ProblemsMuhammad Rahim0https://orcid.org/0000-0003-0064-0414Kamal Shah1https://orcid.org/0000-0002-8851-4844Thabet Abdeljawad2https://orcid.org/0000-0002-8889-3768Maggie Aphane3Alhanouf Alburaikan4Hamiden Abd El-Wahed Khalifa5Department of Mathematics, Hazara University, Mansehra, Khyber Pakhtunkhwa, PakistanDepartment of Mathematics and Sciences, Prince Sultan University, Riyadh, Saudi ArabiaDepartment of Mathematics and Sciences, Prince Sultan University, Riyadh, Saudi ArabiaDepartment of Mathematics and Applied Mathematics, School of Science and Technology, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South AfricaDepartment of Mathematics, College of Science and Arts, Qassim University, Al Badayea, Saudi ArabiaDepartment of Mathematics, College of Science and Arts, Qassim University, Al Badayea, Saudi ArabiaThe <inline-formula> <tex-math notation="LaTeX">$p,q$ </tex-math></inline-formula>-quasirung orthopair fuzzy (<inline-formula> <tex-math notation="LaTeX">$p,q$ </tex-math></inline-formula>-QOF) set, an extension of the <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula>-rung orthopair fuzzy set (<inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula>-ROF) set, offers a more comprehensive approach to information representation, adept at managing data uncertainties. Unlike the restrictive conditions of <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula>-ROF set, which require that the sum of <inline-formula> <tex-math notation="LaTeX">$q^{th}$ </tex-math></inline-formula> power of membership (<inline-formula> <tex-math notation="LaTeX">$\eta$ </tex-math></inline-formula>) and non-membership function (<inline-formula> <tex-math notation="LaTeX">$\vartheta$ </tex-math></inline-formula>) must not exceed one (<inline-formula> <tex-math notation="LaTeX">$\eta ^{q}+\vartheta ^{q}\preccurlyeq 1$ </tex-math></inline-formula>), <inline-formula> <tex-math notation="LaTeX">$p,q$ </tex-math></inline-formula>-QOFS relaxes these limitations. Here, the combined value of the <inline-formula> <tex-math notation="LaTeX">$p^{th}$ </tex-math></inline-formula> power of membership and <inline-formula> <tex-math notation="LaTeX">$q^{th}$ </tex-math></inline-formula> power of non-membership is confined within one i.e., <inline-formula> <tex-math notation="LaTeX">$\eta ^{p}+\vartheta ^{q} \preccurlyeq 1$ </tex-math></inline-formula>, under the conditions <inline-formula> <tex-math notation="LaTeX">$p,q \succcurlyeq 1$ </tex-math></inline-formula> and various relationships between <inline-formula> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">$p=q$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$p\succ q$ </tex-math></inline-formula> or <inline-formula> <tex-math notation="LaTeX">$p\prec q$ </tex-math></inline-formula>). This study explores leveraging confidence levels tied to each <inline-formula> <tex-math notation="LaTeX">$p,q$ </tex-math></inline-formula>-quasirung orthopair fuzzy number (<inline-formula> <tex-math notation="LaTeX">$p,q$ </tex-math></inline-formula>&#x2013;QOFN) to devise a set of averaging and geometric aggregation operators (AOs). These operators effectively combine rating values from distinct criteria, as presented by decision-makers. By harnessing these operators, a novel approach for multi-criteria group decision-making (MCGDM) is formulated, well-suited to resolving real-life decision-making (DM) challenges. An illustrative example underscores the method&#x2019;s efficacy and validity. Finally, a comparative assessment against existing methods highlights the superior performance of the proposed approach.https://ieeexplore.ieee.org/document/10271277/p, q-quasirung orthopair fuzzy setconfidence levelsmulti-criteria group decision-makingoptimization methodaggregation operatorsoptimization
spellingShingle Muhammad Rahim
Kamal Shah
Thabet Abdeljawad
Maggie Aphane
Alhanouf Alburaikan
Hamiden Abd El-Wahed Khalifa
Confidence Levels-Based <italic>p</italic>, <italic>q</italic>-Quasirung Orthopair Fuzzy Operators and Its Applications to Criteria Group Decision Making Problems
IEEE Access
p, q-quasirung orthopair fuzzy set
confidence levels
multi-criteria group decision-making
optimization method
aggregation operators
optimization
title Confidence Levels-Based <italic>p</italic>, <italic>q</italic>-Quasirung Orthopair Fuzzy Operators and Its Applications to Criteria Group Decision Making Problems
title_full Confidence Levels-Based <italic>p</italic>, <italic>q</italic>-Quasirung Orthopair Fuzzy Operators and Its Applications to Criteria Group Decision Making Problems
title_fullStr Confidence Levels-Based <italic>p</italic>, <italic>q</italic>-Quasirung Orthopair Fuzzy Operators and Its Applications to Criteria Group Decision Making Problems
title_full_unstemmed Confidence Levels-Based <italic>p</italic>, <italic>q</italic>-Quasirung Orthopair Fuzzy Operators and Its Applications to Criteria Group Decision Making Problems
title_short Confidence Levels-Based <italic>p</italic>, <italic>q</italic>-Quasirung Orthopair Fuzzy Operators and Its Applications to Criteria Group Decision Making Problems
title_sort confidence levels based italic p italic italic q italic quasirung orthopair fuzzy operators and its applications to criteria group decision making problems
topic p, q-quasirung orthopair fuzzy set
confidence levels
multi-criteria group decision-making
optimization method
aggregation operators
optimization
url https://ieeexplore.ieee.org/document/10271277/
work_keys_str_mv AT muhammadrahim confidencelevelsbaseditalicpitalicitalicqitalicquasirungorthopairfuzzyoperatorsanditsapplicationstocriteriagroupdecisionmakingproblems
AT kamalshah confidencelevelsbaseditalicpitalicitalicqitalicquasirungorthopairfuzzyoperatorsanditsapplicationstocriteriagroupdecisionmakingproblems
AT thabetabdeljawad confidencelevelsbaseditalicpitalicitalicqitalicquasirungorthopairfuzzyoperatorsanditsapplicationstocriteriagroupdecisionmakingproblems
AT maggieaphane confidencelevelsbaseditalicpitalicitalicqitalicquasirungorthopairfuzzyoperatorsanditsapplicationstocriteriagroupdecisionmakingproblems
AT alhanoufalburaikan confidencelevelsbaseditalicpitalicitalicqitalicquasirungorthopairfuzzyoperatorsanditsapplicationstocriteriagroupdecisionmakingproblems
AT hamidenabdelwahedkhalifa confidencelevelsbaseditalicpitalicitalicqitalicquasirungorthopairfuzzyoperatorsanditsapplicationstocriteriagroupdecisionmakingproblems