Crafting a Personalized Prognostic Model for Malignant Prostate Cancer Patients Using Risk Gene Signatures Discovered through TCGA-PRAD Mining, Machine Learning, and Single-Cell RNA-Sequencing
Background: Prostate cancer is a significant clinical issue, particularly for high Gleason score (GS) malignancy patients. Our study aimed to engineer and validate a risk model based on the profiles of high-GS PCa patients for early identification and the prediction of prognosis. Methods: We conduct...
Hlavní autoři: | , , , , , , , |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
MDPI AG
2023-06-01
|
Edice: | Diagnostics |
Témata: | |
On-line přístup: | https://www.mdpi.com/2075-4418/13/12/1997 |