Cell Cycle, Filament Growth and Synchronized Cell Division in Multicellular Cable Bacteria

Cable bacteria are multicellular, Gram-negative filamentous bacteria that display a unique division of metabolic labor between cells. Cells in deeper sediment layers are oxidizing sulfide, while cells in the surface layers of the sediment are reducing oxygen. The electrical coupling of these two red...

Full description

Bibliographic Details
Main Authors: Nicole M. J. Geerlings, Jeanine S. Geelhoed, Diana Vasquez-Cardenas, Michiel V. M. Kienhuis, Silvia Hidalgo-Martinez, Henricus T. S. Boschker, Jack J. Middelburg, Filip J. R. Meysman, Lubos Polerecky
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-01-01
Series:Frontiers in Microbiology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fmicb.2021.620807/full
_version_ 1831538000182378496
author Nicole M. J. Geerlings
Jeanine S. Geelhoed
Diana Vasquez-Cardenas
Michiel V. M. Kienhuis
Silvia Hidalgo-Martinez
Henricus T. S. Boschker
Jack J. Middelburg
Filip J. R. Meysman
Filip J. R. Meysman
Lubos Polerecky
author_facet Nicole M. J. Geerlings
Jeanine S. Geelhoed
Diana Vasquez-Cardenas
Michiel V. M. Kienhuis
Silvia Hidalgo-Martinez
Henricus T. S. Boschker
Jack J. Middelburg
Filip J. R. Meysman
Filip J. R. Meysman
Lubos Polerecky
author_sort Nicole M. J. Geerlings
collection DOAJ
description Cable bacteria are multicellular, Gram-negative filamentous bacteria that display a unique division of metabolic labor between cells. Cells in deeper sediment layers are oxidizing sulfide, while cells in the surface layers of the sediment are reducing oxygen. The electrical coupling of these two redox half reactions is ensured via long-distance electron transport through a network of conductive fibers that run in the shared cell envelope of the centimeter-long filament. Here we investigate how this unique electrogenic metabolism is linked to filament growth and cell division. Combining dual-label stable isotope probing (13C and 15N), nanoscale secondary ion mass spectrometry, fluorescence microscopy and genome analysis, we find that the cell cycle of cable bacteria cells is highly comparable to that of other, single-celled Gram-negative bacteria. However, the timing of cell growth and division appears to be tightly and uniquely controlled by long-distance electron transport, as cell division within an individual filament shows a remarkable synchronicity that extends over a millimeter length scale. To explain this, we propose the “oxygen pacemaker” model in which a filament only grows when performing long-distance transport, and the latter is only possible when a filament has access to oxygen so it can discharge electrons from its internal electrical network.
first_indexed 2024-12-16T23:16:15Z
format Article
id doaj.art-f805ebd3831149a38fa3ab93f191ff9b
institution Directory Open Access Journal
issn 1664-302X
language English
last_indexed 2024-12-16T23:16:15Z
publishDate 2021-01-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Microbiology
spelling doaj.art-f805ebd3831149a38fa3ab93f191ff9b2022-12-21T22:12:17ZengFrontiers Media S.A.Frontiers in Microbiology1664-302X2021-01-011210.3389/fmicb.2021.620807620807Cell Cycle, Filament Growth and Synchronized Cell Division in Multicellular Cable BacteriaNicole M. J. Geerlings0Jeanine S. Geelhoed1Diana Vasquez-Cardenas2Michiel V. M. Kienhuis3Silvia Hidalgo-Martinez4Henricus T. S. Boschker5Jack J. Middelburg6Filip J. R. Meysman7Filip J. R. Meysman8Lubos Polerecky9Department of Earth Sciences, Utrecht University, Utrecht, NetherlandsDepartment of Biology, University of Antwerp, Antwerp, BelgiumDepartment of Biotechnology, Delft University of Technology, Delft, NetherlandsDepartment of Earth Sciences, Utrecht University, Utrecht, NetherlandsDepartment of Biology, University of Antwerp, Antwerp, BelgiumDepartment of Biotechnology, Delft University of Technology, Delft, NetherlandsDepartment of Earth Sciences, Utrecht University, Utrecht, NetherlandsDepartment of Biology, University of Antwerp, Antwerp, BelgiumDepartment of Biotechnology, Delft University of Technology, Delft, NetherlandsDepartment of Earth Sciences, Utrecht University, Utrecht, NetherlandsCable bacteria are multicellular, Gram-negative filamentous bacteria that display a unique division of metabolic labor between cells. Cells in deeper sediment layers are oxidizing sulfide, while cells in the surface layers of the sediment are reducing oxygen. The electrical coupling of these two redox half reactions is ensured via long-distance electron transport through a network of conductive fibers that run in the shared cell envelope of the centimeter-long filament. Here we investigate how this unique electrogenic metabolism is linked to filament growth and cell division. Combining dual-label stable isotope probing (13C and 15N), nanoscale secondary ion mass spectrometry, fluorescence microscopy and genome analysis, we find that the cell cycle of cable bacteria cells is highly comparable to that of other, single-celled Gram-negative bacteria. However, the timing of cell growth and division appears to be tightly and uniquely controlled by long-distance electron transport, as cell division within an individual filament shows a remarkable synchronicity that extends over a millimeter length scale. To explain this, we propose the “oxygen pacemaker” model in which a filament only grows when performing long-distance transport, and the latter is only possible when a filament has access to oxygen so it can discharge electrons from its internal electrical network.https://www.frontiersin.org/articles/10.3389/fmicb.2021.620807/fullcable bacteriastable isotope probingnanoSIMSfilament growthcell cyclecell division
spellingShingle Nicole M. J. Geerlings
Jeanine S. Geelhoed
Diana Vasquez-Cardenas
Michiel V. M. Kienhuis
Silvia Hidalgo-Martinez
Henricus T. S. Boschker
Jack J. Middelburg
Filip J. R. Meysman
Filip J. R. Meysman
Lubos Polerecky
Cell Cycle, Filament Growth and Synchronized Cell Division in Multicellular Cable Bacteria
Frontiers in Microbiology
cable bacteria
stable isotope probing
nanoSIMS
filament growth
cell cycle
cell division
title Cell Cycle, Filament Growth and Synchronized Cell Division in Multicellular Cable Bacteria
title_full Cell Cycle, Filament Growth and Synchronized Cell Division in Multicellular Cable Bacteria
title_fullStr Cell Cycle, Filament Growth and Synchronized Cell Division in Multicellular Cable Bacteria
title_full_unstemmed Cell Cycle, Filament Growth and Synchronized Cell Division in Multicellular Cable Bacteria
title_short Cell Cycle, Filament Growth and Synchronized Cell Division in Multicellular Cable Bacteria
title_sort cell cycle filament growth and synchronized cell division in multicellular cable bacteria
topic cable bacteria
stable isotope probing
nanoSIMS
filament growth
cell cycle
cell division
url https://www.frontiersin.org/articles/10.3389/fmicb.2021.620807/full
work_keys_str_mv AT nicolemjgeerlings cellcyclefilamentgrowthandsynchronizedcelldivisioninmulticellularcablebacteria
AT jeaninesgeelhoed cellcyclefilamentgrowthandsynchronizedcelldivisioninmulticellularcablebacteria
AT dianavasquezcardenas cellcyclefilamentgrowthandsynchronizedcelldivisioninmulticellularcablebacteria
AT michielvmkienhuis cellcyclefilamentgrowthandsynchronizedcelldivisioninmulticellularcablebacteria
AT silviahidalgomartinez cellcyclefilamentgrowthandsynchronizedcelldivisioninmulticellularcablebacteria
AT henricustsboschker cellcyclefilamentgrowthandsynchronizedcelldivisioninmulticellularcablebacteria
AT jackjmiddelburg cellcyclefilamentgrowthandsynchronizedcelldivisioninmulticellularcablebacteria
AT filipjrmeysman cellcyclefilamentgrowthandsynchronizedcelldivisioninmulticellularcablebacteria
AT filipjrmeysman cellcyclefilamentgrowthandsynchronizedcelldivisioninmulticellularcablebacteria
AT lubospolerecky cellcyclefilamentgrowthandsynchronizedcelldivisioninmulticellularcablebacteria