Replacing Synthetic Nitrogen Fertilizer with Different Types of Organic Materials Improves Grain Yield in China: A Meta-Analysis

Synthetic nitrogen fertilizer substitution (NSS) with different types of organic material is a cleaner agricultural practice for reducing the application of synthetic N input in farmlands while also relieving the environmental issues caused by the discharge of organic wastes. However, the effects of...

Full description

Bibliographic Details
Main Authors: Xiaoru Fan, Zekai Chen, Zihan Niu, Ruiyao Zeng, Jingmin Ou, Xingxing Liu, Xiaolong Wang
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Agronomy
Subjects:
Online Access:https://www.mdpi.com/2073-4395/11/12/2429
Description
Summary:Synthetic nitrogen fertilizer substitution (NSS) with different types of organic material is a cleaner agricultural practice for reducing the application of synthetic N input in farmlands while also relieving the environmental issues caused by the discharge of organic wastes. However, the effects of the NSS practice on crop yields, being the primary objective of agricultural activity, is still uncertain in China. This study conducted a meta-analysis to assess the impacts of the NSS practices with different types of organic materials on crop yields. Results showed that the average crop yield was increased by 3.4%, with significant differences under NSS, thereby demonstrating that this practice contributed to improving crop yields, especially of rice and maize. According to published reports, the NSS practices involving chicken manure, pig manure, and crop straw increased crop yields by 4.79, 7.68, and 3.28%, respectively, with significant differences, thus demonstrating the superior effects needed for replacing synthetic N fertilizer. Moreover, substitution ratios (SR) between 0% and 60% could be suggested when using the NSS practice, with the high SR recommended when the original soil fertility was adequate for crops. Considering the long-term effects of applied organic materials, improving the grain yield with the NSS practice should be expected in the long-term. By effectively applying the NSS, this study attempted to scientifically decide on the type of organic materials and the appropriate SR based on the conditions of the soil and the crop. The results provide research information for the development of clean agricultural production and food security in China.
ISSN:2073-4395