Sodium Tungstate (NaW) Decreases Reactive Oxygen Species (ROS) Production in Cells: New Cellular Antioxidant

Diabetic nephropathy (DN) is the leading cause of end-stage renal failure worldwide. Hyperglycemia generates reactive oxygen species (ROS), contributing to diabetic complications, especially in DN. Sodium Tungstate (NaW) is an effective antidiabetic agent for short and long-term treatments of both t...

Full description

Bibliographic Details
Main Authors: Alejandro J. Yañez, Karen Jaramillo, Camila Blaña, Rafael A. Burgos, Adolfo Isla, Pamela Silva, Marcelo Aguilar
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Biomedicines
Subjects:
Online Access:https://www.mdpi.com/2227-9059/11/2/417
Description
Summary:Diabetic nephropathy (DN) is the leading cause of end-stage renal failure worldwide. Hyperglycemia generates reactive oxygen species (ROS), contributing to diabetic complications, especially in DN. Sodium Tungstate (NaW) is an effective antidiabetic agent for short and long-term treatments of both type 1 and type 2 diabetes models. In this study, we evaluated the effect of NaW on ROS production in bovine neutrophils incubated with platelet-activating factor (PAF) and in HK-2 cells induced by high glucose or H<sub>2</sub>O<sub>2</sub>. In addition, we evaluated the effect on iNOS expression in the type 1 diabetic rat model induced with streptozotocin (STZ). NaW inhibited ROS production in PAF-induced bovine neutrophils, and human tubular cells (HK-2) were incubated in high glucose or H<sub>2</sub>O<sub>2</sub>. In addition, NaW inhibited iNOS expression in glomeruli and tubular cells in the type 1 diabetic rat. This study demonstrates a new role for NaW as an active antioxidant and its potential use in treating DN.
ISSN:2227-9059