Non-Viral Gene Therapy in Trabecular Meshwork Cells to Prevent Fibrosis in Minimally Invasive Glaucoma Surgery

The primary cause of failure for minimally invasive glaucoma surgery (MIGS) is fibrosis in the trabecular meshwork (TM) that regulates the outflow of aqueous humour, and no anti-fibrotic drug is available for intraocular use in MIGS. The myocardin-related transcription factor/serum response factor (...

Full description

Bibliographic Details
Main Authors: Jinyuan Luo, Greymi Tan, Kai Xin Thong, Konstantinos N. Kafetzis, Neeru Vallabh, Carl M. Sheridan, Yusuke Sato, Hideyoshi Harashima, Aristides D. Tagalakis, Cynthia Yu-Wai-Man
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Pharmaceutics
Subjects:
Online Access:https://www.mdpi.com/1999-4923/14/11/2472
_version_ 1797464261105025024
author Jinyuan Luo
Greymi Tan
Kai Xin Thong
Konstantinos N. Kafetzis
Neeru Vallabh
Carl M. Sheridan
Yusuke Sato
Hideyoshi Harashima
Aristides D. Tagalakis
Cynthia Yu-Wai-Man
author_facet Jinyuan Luo
Greymi Tan
Kai Xin Thong
Konstantinos N. Kafetzis
Neeru Vallabh
Carl M. Sheridan
Yusuke Sato
Hideyoshi Harashima
Aristides D. Tagalakis
Cynthia Yu-Wai-Man
author_sort Jinyuan Luo
collection DOAJ
description The primary cause of failure for minimally invasive glaucoma surgery (MIGS) is fibrosis in the trabecular meshwork (TM) that regulates the outflow of aqueous humour, and no anti-fibrotic drug is available for intraocular use in MIGS. The myocardin-related transcription factor/serum response factor (MRTF/SRF) pathway is a promising anti-fibrotic target. This study aims to utilise a novel lipid nanoparticle (LNP) to deliver MRTF-B siRNA into human TM cells and to compare its effects with those observed in human conjunctival fibroblasts (FF). Two LNP formulations were prepared with and without the targeting peptide c<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Υ</mi></semantics></math></inline-formula>, and with an siRNA concentration of 50 nM. We examined the biophysical properties and encapsulation efficiencies of the LNPs, and evaluated the effects of <i>MRTF-B</i> silencing on cell viability, key fibrotic genes expression and cell contractility. Both LNP formulations efficiently silenced <i>MRTF-B</i> gene and were non-cytotoxic in TM and FF cells. The presence of c<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Υ</mi></semantics></math></inline-formula> made the LNPs smaller and more cationic, but had no significant effect on encapsulation efficiency. Both TM and FF cells also showed significantly reduced contractibility after transfection with MRTF-B siRNA LNPs. In TM cells, LNPs with c<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Υ</mi></semantics></math></inline-formula> achieved a greater decrease in contractility compared to LNPs without c<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Υ</mi></semantics></math></inline-formula>. In conclusion, we demonstrate that the novel CL4H6-LNPs are able to safely and effectively deliver MRTF-B siRNA into human TM cells. LNPs can serve as a promising non-viral gene therapy to prevent fibrosis in MIGS.
first_indexed 2024-03-09T18:04:57Z
format Article
id doaj.art-f81134b72765434d8df5ccafcd8d7fdb
institution Directory Open Access Journal
issn 1999-4923
language English
last_indexed 2024-03-09T18:04:57Z
publishDate 2022-11-01
publisher MDPI AG
record_format Article
series Pharmaceutics
spelling doaj.art-f81134b72765434d8df5ccafcd8d7fdb2023-11-24T09:36:23ZengMDPI AGPharmaceutics1999-49232022-11-011411247210.3390/pharmaceutics14112472Non-Viral Gene Therapy in Trabecular Meshwork Cells to Prevent Fibrosis in Minimally Invasive Glaucoma SurgeryJinyuan Luo0Greymi Tan1Kai Xin Thong2Konstantinos N. Kafetzis3Neeru Vallabh4Carl M. Sheridan5Yusuke Sato6Hideyoshi Harashima7Aristides D. Tagalakis8Cynthia Yu-Wai-Man9Faculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UKFaculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UKFaculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UKDepartment of Biology, Edge Hill University, Ormskirk L39 4QP, UKDepartment of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UKDepartment of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UKFaculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, JapanFaculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, JapanDepartment of Biology, Edge Hill University, Ormskirk L39 4QP, UKFaculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UKThe primary cause of failure for minimally invasive glaucoma surgery (MIGS) is fibrosis in the trabecular meshwork (TM) that regulates the outflow of aqueous humour, and no anti-fibrotic drug is available for intraocular use in MIGS. The myocardin-related transcription factor/serum response factor (MRTF/SRF) pathway is a promising anti-fibrotic target. This study aims to utilise a novel lipid nanoparticle (LNP) to deliver MRTF-B siRNA into human TM cells and to compare its effects with those observed in human conjunctival fibroblasts (FF). Two LNP formulations were prepared with and without the targeting peptide c<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Υ</mi></semantics></math></inline-formula>, and with an siRNA concentration of 50 nM. We examined the biophysical properties and encapsulation efficiencies of the LNPs, and evaluated the effects of <i>MRTF-B</i> silencing on cell viability, key fibrotic genes expression and cell contractility. Both LNP formulations efficiently silenced <i>MRTF-B</i> gene and were non-cytotoxic in TM and FF cells. The presence of c<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Υ</mi></semantics></math></inline-formula> made the LNPs smaller and more cationic, but had no significant effect on encapsulation efficiency. Both TM and FF cells also showed significantly reduced contractibility after transfection with MRTF-B siRNA LNPs. In TM cells, LNPs with c<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Υ</mi></semantics></math></inline-formula> achieved a greater decrease in contractility compared to LNPs without c<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Υ</mi></semantics></math></inline-formula>. In conclusion, we demonstrate that the novel CL4H6-LNPs are able to safely and effectively deliver MRTF-B siRNA into human TM cells. LNPs can serve as a promising non-viral gene therapy to prevent fibrosis in MIGS.https://www.mdpi.com/1999-4923/14/11/2472nanoparticlegene therapytrabecular meshworkfibrosisMIGS
spellingShingle Jinyuan Luo
Greymi Tan
Kai Xin Thong
Konstantinos N. Kafetzis
Neeru Vallabh
Carl M. Sheridan
Yusuke Sato
Hideyoshi Harashima
Aristides D. Tagalakis
Cynthia Yu-Wai-Man
Non-Viral Gene Therapy in Trabecular Meshwork Cells to Prevent Fibrosis in Minimally Invasive Glaucoma Surgery
Pharmaceutics
nanoparticle
gene therapy
trabecular meshwork
fibrosis
MIGS
title Non-Viral Gene Therapy in Trabecular Meshwork Cells to Prevent Fibrosis in Minimally Invasive Glaucoma Surgery
title_full Non-Viral Gene Therapy in Trabecular Meshwork Cells to Prevent Fibrosis in Minimally Invasive Glaucoma Surgery
title_fullStr Non-Viral Gene Therapy in Trabecular Meshwork Cells to Prevent Fibrosis in Minimally Invasive Glaucoma Surgery
title_full_unstemmed Non-Viral Gene Therapy in Trabecular Meshwork Cells to Prevent Fibrosis in Minimally Invasive Glaucoma Surgery
title_short Non-Viral Gene Therapy in Trabecular Meshwork Cells to Prevent Fibrosis in Minimally Invasive Glaucoma Surgery
title_sort non viral gene therapy in trabecular meshwork cells to prevent fibrosis in minimally invasive glaucoma surgery
topic nanoparticle
gene therapy
trabecular meshwork
fibrosis
MIGS
url https://www.mdpi.com/1999-4923/14/11/2472
work_keys_str_mv AT jinyuanluo nonviralgenetherapyintrabecularmeshworkcellstopreventfibrosisinminimallyinvasiveglaucomasurgery
AT greymitan nonviralgenetherapyintrabecularmeshworkcellstopreventfibrosisinminimallyinvasiveglaucomasurgery
AT kaixinthong nonviralgenetherapyintrabecularmeshworkcellstopreventfibrosisinminimallyinvasiveglaucomasurgery
AT konstantinosnkafetzis nonviralgenetherapyintrabecularmeshworkcellstopreventfibrosisinminimallyinvasiveglaucomasurgery
AT neeruvallabh nonviralgenetherapyintrabecularmeshworkcellstopreventfibrosisinminimallyinvasiveglaucomasurgery
AT carlmsheridan nonviralgenetherapyintrabecularmeshworkcellstopreventfibrosisinminimallyinvasiveglaucomasurgery
AT yusukesato nonviralgenetherapyintrabecularmeshworkcellstopreventfibrosisinminimallyinvasiveglaucomasurgery
AT hideyoshiharashima nonviralgenetherapyintrabecularmeshworkcellstopreventfibrosisinminimallyinvasiveglaucomasurgery
AT aristidesdtagalakis nonviralgenetherapyintrabecularmeshworkcellstopreventfibrosisinminimallyinvasiveglaucomasurgery
AT cynthiayuwaiman nonviralgenetherapyintrabecularmeshworkcellstopreventfibrosisinminimallyinvasiveglaucomasurgery