G protein-coupled receptors function as cell membrane receptors for the steroid hormone 20-hydroxyecdysone
Abstract G protein-coupled receptors (GPCRs) are cell membrane receptors for various ligands. Recent studies have suggested that GPCRs transmit animal steroid hormone signals. Certain GPCRs have been shown to bind steroid hormones, for example, G protein-coupled estrogen receptor 1 (GPER1) binds est...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2020-09-01
|
Series: | Cell Communication and Signaling |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s12964-020-00620-y |
_version_ | 1818149076156284928 |
---|---|
author | Xiao-Fan Zhao |
author_facet | Xiao-Fan Zhao |
author_sort | Xiao-Fan Zhao |
collection | DOAJ |
description | Abstract G protein-coupled receptors (GPCRs) are cell membrane receptors for various ligands. Recent studies have suggested that GPCRs transmit animal steroid hormone signals. Certain GPCRs have been shown to bind steroid hormones, for example, G protein-coupled estrogen receptor 1 (GPER1) binds estrogen in humans, and Drosophila dopamine/ecdysteroid receptor (DopEcR) binds the molting hormone 20-hydroxyecdysone (20E) in insects. This review summarizes the research progress on GPCRs as animal steroid hormone cell membrane receptors, including the nuclear and cell membrane receptors of steroid hormones in mammals and insects, the 20E signaling cascade via GPCRs, termination of 20E signaling, and the relationship between genomic action and the nongenomic action of 20E. Studies indicate that 20E induces a signal via GPCRs to regulate rapid cellular responses, including rapid Ca2+ release from the endoplasmic reticulum and influx from the extracellular medium, as well as rapid protein phosphorylation and subcellular translocation. 20E via the GPCR/Ca2+/PKC/signaling axis and the GPCR/cAMP/PKA-signaling axis regulates gene transcription by adjusting transcription complex formation and DNA binding activity. GPCRs can bind 20E in the cell membrane and after being isolated, suggesting GPCRs as cell membrane receptors of 20E. This review deepens our understanding of GPCRs as steroid hormone cell membrane receptors and the GPCR-mediated signaling pathway of 20E (20E-GPCR pathway), which will promote further study of steroid hormone signaling via GPCRs, and presents GPCRs as targets to explore new pharmaceutical materials to treat steroid hormone-related diseases or control pest insects. Video abstract Graphical abstract |
first_indexed | 2024-12-11T13:01:17Z |
format | Article |
id | doaj.art-f81988f49d9444fe9554e279e09ca2c8 |
institution | Directory Open Access Journal |
issn | 1478-811X |
language | English |
last_indexed | 2024-12-11T13:01:17Z |
publishDate | 2020-09-01 |
publisher | BMC |
record_format | Article |
series | Cell Communication and Signaling |
spelling | doaj.art-f81988f49d9444fe9554e279e09ca2c82022-12-22T01:06:27ZengBMCCell Communication and Signaling1478-811X2020-09-011811910.1186/s12964-020-00620-yG protein-coupled receptors function as cell membrane receptors for the steroid hormone 20-hydroxyecdysoneXiao-Fan Zhao0Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityAbstract G protein-coupled receptors (GPCRs) are cell membrane receptors for various ligands. Recent studies have suggested that GPCRs transmit animal steroid hormone signals. Certain GPCRs have been shown to bind steroid hormones, for example, G protein-coupled estrogen receptor 1 (GPER1) binds estrogen in humans, and Drosophila dopamine/ecdysteroid receptor (DopEcR) binds the molting hormone 20-hydroxyecdysone (20E) in insects. This review summarizes the research progress on GPCRs as animal steroid hormone cell membrane receptors, including the nuclear and cell membrane receptors of steroid hormones in mammals and insects, the 20E signaling cascade via GPCRs, termination of 20E signaling, and the relationship between genomic action and the nongenomic action of 20E. Studies indicate that 20E induces a signal via GPCRs to regulate rapid cellular responses, including rapid Ca2+ release from the endoplasmic reticulum and influx from the extracellular medium, as well as rapid protein phosphorylation and subcellular translocation. 20E via the GPCR/Ca2+/PKC/signaling axis and the GPCR/cAMP/PKA-signaling axis regulates gene transcription by adjusting transcription complex formation and DNA binding activity. GPCRs can bind 20E in the cell membrane and after being isolated, suggesting GPCRs as cell membrane receptors of 20E. This review deepens our understanding of GPCRs as steroid hormone cell membrane receptors and the GPCR-mediated signaling pathway of 20E (20E-GPCR pathway), which will promote further study of steroid hormone signaling via GPCRs, and presents GPCRs as targets to explore new pharmaceutical materials to treat steroid hormone-related diseases or control pest insects. Video abstract Graphical abstracthttp://link.springer.com/article/10.1186/s12964-020-00620-yGPCRSteroid hormone20-hydroxyecdysoneCell membrane receptorSignal pathway |
spellingShingle | Xiao-Fan Zhao G protein-coupled receptors function as cell membrane receptors for the steroid hormone 20-hydroxyecdysone Cell Communication and Signaling GPCR Steroid hormone 20-hydroxyecdysone Cell membrane receptor Signal pathway |
title | G protein-coupled receptors function as cell membrane receptors for the steroid hormone 20-hydroxyecdysone |
title_full | G protein-coupled receptors function as cell membrane receptors for the steroid hormone 20-hydroxyecdysone |
title_fullStr | G protein-coupled receptors function as cell membrane receptors for the steroid hormone 20-hydroxyecdysone |
title_full_unstemmed | G protein-coupled receptors function as cell membrane receptors for the steroid hormone 20-hydroxyecdysone |
title_short | G protein-coupled receptors function as cell membrane receptors for the steroid hormone 20-hydroxyecdysone |
title_sort | g protein coupled receptors function as cell membrane receptors for the steroid hormone 20 hydroxyecdysone |
topic | GPCR Steroid hormone 20-hydroxyecdysone Cell membrane receptor Signal pathway |
url | http://link.springer.com/article/10.1186/s12964-020-00620-y |
work_keys_str_mv | AT xiaofanzhao gproteincoupledreceptorsfunctionascellmembranereceptorsforthesteroidhormone20hydroxyecdysone |