Electrocatalytic Oxidation of Ethanol and Ethylene Glycol onto Poly (o-Anisidine)-Nickel Composite Electrode

In this work, poly (o-Anisidine) (POA) was prepared by consecutive potential cycling in an acidic monomer solution at the surface of Carbon Paste Electrode (CPE). Nickel ions were dispersed into the polymer by immersing the electrode in NiSO4 solution. The prepared Ni/POA/CPE was characterized by sc...

Full description

Bibliographic Details
Main Authors: Ezzat Naddaf, Mohammad Reza Abedi, Mohammad Saleh Zabihi, Alihossien Imani
Format: Article
Language:English
Published: Iranian Institute of Research and Development in Chemical Industries (IRDCI)-ACECR 2017-03-01
Series:Iranian Journal of Chemistry & Chemical Engineering
Subjects:
Online Access:http://www.ijcce.ac.ir/article_25191_48e07744e493cb364b9fa557a43c0f4a.pdf
Description
Summary:In this work, poly (o-Anisidine) (POA) was prepared by consecutive potential cycling in an acidic monomer solution at the surface of Carbon Paste Electrode (CPE). Nickel ions were dispersed into the polymer by immersing the electrode in NiSO4 solution. The prepared Ni/POA/CPE was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, Atomic Force Microscopy (AFM) and electrochemical methods. The electrochemical oxidation of ethanol and ethylene glycol was investigated at the Ni/POA/CPE by cyclic voltammetry and chronoamperometry techniques. The results indicated that the Ni/POA/CPE in comparison with Ni/CPE exhibited excellent electrocatalytic activity towards oxidation. Then, using a chronoamperometry method, the catalytic rate constant, k, for ethanol and ethylene glycol oxidation were found to be 2.6×106 and 1.07×107 cm3/mol s, respectively. Furthermore, the effect of several parameters such as OA concentration, POA thickness, and NiSO4 concentration and accumulation times towards the ethanol oxidation as well as the long-term stability of the modified electrode has been investigated.
ISSN:1021-9986
1021-9986