#London2012: Towards Citizen-Contributed Urban Planning Through Sentiment Analysis of Twitter Data

The dynamic nature of cities, understood as complex systems with a variety of concurring factors, poses significant challenges to urban analysis for supporting planning processes. This particularly applies to large urban events because their characteristics often contradict daily planning routines....

Full description

Bibliographic Details
Main Authors: Anna Kovacs-Gyori, Alina Ristea, Clemens Havas, Bernd Resch, Pablo Cabrera-Barona
Format: Article
Language:English
Published: Cogitatio 2018-03-01
Series:Urban Planning
Subjects:
Online Access:https://www.cogitatiopress.com/urbanplanning/article/view/1287
Description
Summary:The dynamic nature of cities, understood as complex systems with a variety of concurring factors, poses significant challenges to urban analysis for supporting planning processes. This particularly applies to large urban events because their characteristics often contradict daily planning routines. Due to the availability of large amounts of data, social media offer the possibility for fine-scale spatial and temporal analysis in this context, especially regarding public emotions related to varied topics. Thus, this article proposes a combined approach for analyzing large sports events considering event days vs comparison days (before or after the event) and different user groups (residents vs visitors), as well as integrating sentiment analysis and topic extraction. Our results based on various analyses of tweets demonstrate that different spatial and temporal patterns can be identified, clearly distinguishing both residents and visitors, along with positive or negative sentiment. Furthermore, we could assign tweets to specific urban events or extract topics related to the transportation infrastructure. Although the results are potentially able to support urban planning processes of large events, the approach still shows some limitations including well-known biases in social media or shortcomings in identifying the user groups and in the topic modeling approach.
ISSN:2183-7635