Design, characterization and enhanced bioavailability of hydroxypropylcellulose-naproxen conjugates

Polysaccharides are beneficially used as drug carriers via prodrug formation and offer a mechanism for better effectiveness and delivery of the drug. The unique geometry of hydroxypropylcellulose (HPC), a polysaccharide, allows the attachment of drug molecules with a higher degree of substitution be...

Full description

Bibliographic Details
Main Authors: Muhammad Ajaz Hussain, Iqra Shad, Iram Malik, Fasiha Amjad, Muhammad Nawaz Tahir, Nisar Ullah, Muhammad Ashraf, Muhammad Sher
Format: Article
Language:English
Published: Elsevier 2020-06-01
Series:Arabian Journal of Chemistry
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1878535220301167
Description
Summary:Polysaccharides are beneficially used as drug carriers via prodrug formation and offer a mechanism for better effectiveness and delivery of the drug. The unique geometry of hydroxypropylcellulose (HPC), a polysaccharide, allows the attachment of drug molecules with a higher degree of substitution because the hydroxyls groups are projected outside the HPC chains. Therefore HPC-Naproxen conjugates, i.e., macromolecular prodrugs, were synthesized using a powerful acylation reagent carbonyldiimadazole (CDI) in N,N' dimethylacetamide (DMAc) solvent. The reactions were carried out at 80 °C under stirring for 24 h and inert environment. This reaction strategy appeared efficient to obtain a high degree of drug substitution (DS = 0.88–1.40) on the polymer parent chain as calculated by UV–visible spectrophotometry after hydrolysis of the samples. The method provides high efficacy as product yields were high (77–81%). Macromolecular prodrugs (MPDs) with different DS of naproxen designed were found soluble in organic solvents.
ISSN:1878-5352