Extending Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks
Side channel analysis and fault attacks are two powerful methods to analyze and break cryptographic implementations. At CHES 2011, Roche and Prouff applied secure multiparty computation to prevent side-channel attacks. While multiparty computation is known to be fault-resistant as well, the particul...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Ruhr-Universität Bochum
2018-08-01
|
Series: | Transactions on Cryptographic Hardware and Embedded Systems |
Subjects: | |
Online Access: | https://tches.iacr.org/index.php/TCHES/article/view/7281 |
_version_ | 1818082474535682048 |
---|---|
author | Okan Seker Abraham Fernandez-Rubio Thomas Eisenbarth Rainer Steinwandt |
author_facet | Okan Seker Abraham Fernandez-Rubio Thomas Eisenbarth Rainer Steinwandt |
author_sort | Okan Seker |
collection | DOAJ |
description | Side channel analysis and fault attacks are two powerful methods to analyze and break cryptographic implementations. At CHES 2011, Roche and Prouff applied secure multiparty computation to prevent side-channel attacks. While multiparty computation is known to be fault-resistant as well, the particular scheme used for side-channel protection does not currently offer this feature. This work introduces a new secure multiparty circuit to prevent both fault injection attacks and sidechannel analysis. The new scheme extends the Roche and Prouff scheme to make faults detectable. Arithmetic operations have been redesigned to propagate fault information until a new secrecy-preserving fault detection can be performed. A new recombination operation ensures randomization of the output in the case of a fault, ensuring that nothing can be learned from the faulty output. The security of the new scheme is proved in the ISW probing model, using the reformulated t-SNI security notion. Besides the new scheme and its security proof, we also present an extensive performance analysis, including a proof-of-concept, software-based AES implementation featuring the masking technique to resist both fault and side-channel attacks at the same time. The performance analysis for different security levels are given for the ARM-M0+ MCU with its memory requirements. A comprehensive leakage analysis shows that a careful implementation of the scheme achieves the expected security level. |
first_indexed | 2024-12-10T19:22:41Z |
format | Article |
id | doaj.art-f84c24aabdd34f838802b5a636e77782 |
institution | Directory Open Access Journal |
issn | 2569-2925 |
language | English |
last_indexed | 2024-12-10T19:22:41Z |
publishDate | 2018-08-01 |
publisher | Ruhr-Universität Bochum |
record_format | Article |
series | Transactions on Cryptographic Hardware and Embedded Systems |
spelling | doaj.art-f84c24aabdd34f838802b5a636e777822022-12-22T01:36:27ZengRuhr-Universität BochumTransactions on Cryptographic Hardware and Embedded Systems2569-29252018-08-012018310.13154/tches.v2018.i3.394-430Extending Glitch-Free Multiparty Protocols to Resist Fault Injection AttacksOkan Seker0Abraham Fernandez-Rubio1Thomas Eisenbarth2Rainer Steinwandt3University of LübeckIntelUniversity of Lübeck, Germany; Worcester Polytechnic InstituteFlorida Atlantic UniversitySide channel analysis and fault attacks are two powerful methods to analyze and break cryptographic implementations. At CHES 2011, Roche and Prouff applied secure multiparty computation to prevent side-channel attacks. While multiparty computation is known to be fault-resistant as well, the particular scheme used for side-channel protection does not currently offer this feature. This work introduces a new secure multiparty circuit to prevent both fault injection attacks and sidechannel analysis. The new scheme extends the Roche and Prouff scheme to make faults detectable. Arithmetic operations have been redesigned to propagate fault information until a new secrecy-preserving fault detection can be performed. A new recombination operation ensures randomization of the output in the case of a fault, ensuring that nothing can be learned from the faulty output. The security of the new scheme is proved in the ISW probing model, using the reformulated t-SNI security notion. Besides the new scheme and its security proof, we also present an extensive performance analysis, including a proof-of-concept, software-based AES implementation featuring the masking technique to resist both fault and side-channel attacks at the same time. The performance analysis for different security levels are given for the ARM-M0+ MCU with its memory requirements. A comprehensive leakage analysis shows that a careful implementation of the scheme achieves the expected security level.https://tches.iacr.org/index.php/TCHES/article/view/7281Secure multiparty computationSide-channel analysisFault attacksPolynomial MaskingARM |
spellingShingle | Okan Seker Abraham Fernandez-Rubio Thomas Eisenbarth Rainer Steinwandt Extending Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks Transactions on Cryptographic Hardware and Embedded Systems Secure multiparty computation Side-channel analysis Fault attacks Polynomial Masking ARM |
title | Extending Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks |
title_full | Extending Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks |
title_fullStr | Extending Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks |
title_full_unstemmed | Extending Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks |
title_short | Extending Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks |
title_sort | extending glitch free multiparty protocols to resist fault injection attacks |
topic | Secure multiparty computation Side-channel analysis Fault attacks Polynomial Masking ARM |
url | https://tches.iacr.org/index.php/TCHES/article/view/7281 |
work_keys_str_mv | AT okanseker extendingglitchfreemultipartyprotocolstoresistfaultinjectionattacks AT abrahamfernandezrubio extendingglitchfreemultipartyprotocolstoresistfaultinjectionattacks AT thomaseisenbarth extendingglitchfreemultipartyprotocolstoresistfaultinjectionattacks AT rainersteinwandt extendingglitchfreemultipartyprotocolstoresistfaultinjectionattacks |