Exploring the Dynamic Impact of Extreme Climate Events on Vegetation Productivity under Climate Change

As global warming continues to intensify, the relationship between diurnal temperature range (DTR) and vegetation productivity continues to change over time. However, the impact of DTR changes on vegetation activities remains uncertain. Thus, further study about how DTR changes affect the physiologi...

Full description

Bibliographic Details
Main Authors: Hanqing Xu, Jinkai Tan, Chunlan Li, Yiying Niu, Jun Wang
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Forests
Subjects:
Online Access:https://www.mdpi.com/1999-4907/14/4/744
Description
Summary:As global warming continues to intensify, the relationship between diurnal temperature range (DTR) and vegetation productivity continues to change over time. However, the impact of DTR changes on vegetation activities remains uncertain. Thus, further study about how DTR changes affect the physiological activities of plants is also urgently needed. In this study, we employed copula function theory to analyze the impact of DTR on Normalized Difference Vegetation Index (NDVI) values during the spring, summer, and autumn seasons from 1982 to 2014 for various land types in the Inner Mongolia Plain (IMP), China. The results showed that the relationship between DTR and NDVI in the IMP was characterized by correlation at the upper tail and asymptotical independence at the lower tail. This demonstrated that the DTR had little effect on NDVI when they reached their minimum value. However, it has a significant impact on NDVI at its maximum values. This study provides valuable insight into the dynamic impact of monthly DTR on different land use types under climate change.
ISSN:1999-4907