Pre- and posttreatment with hydrogen sulfide prevents ventilator-induced lung injury by limiting inflammation and oxidation.
Although essential in critical care medicine, mechanical ventilation often results in ventilator-induced lung injury. Low concentrations of hydrogen sulfide have been proven to have anti-inflammatory and anti-oxidative effects in the lung. The aim of this study was to analyze the kinetic effects of...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2017-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC5409137?pdf=render |
_version_ | 1818557981838540800 |
---|---|
author | Simone Faller Raphael Seiler Rosa Donus Helen Engelstaedter Alexander Hoetzel Sashko Gregoriev Spassov |
author_facet | Simone Faller Raphael Seiler Rosa Donus Helen Engelstaedter Alexander Hoetzel Sashko Gregoriev Spassov |
author_sort | Simone Faller |
collection | DOAJ |
description | Although essential in critical care medicine, mechanical ventilation often results in ventilator-induced lung injury. Low concentrations of hydrogen sulfide have been proven to have anti-inflammatory and anti-oxidative effects in the lung. The aim of this study was to analyze the kinetic effects of pre- and posttreatment with hydrogen sulfide in order to prevent lung injury as well as inflammatory and oxidative stress upon mechanical ventilation. Mice were either non-ventilated or mechanically ventilated with a tidal volume of 12 ml/kg for 6 h. Pretreated mice inhaled hydrogen sulfide in low dose for 1, 3, or 5 h prior to mechanical ventilation. Posttreated mice were ventilated with air followed by ventilation with hydrogen sulfide in various combinations. In addition, mice were ventilated with air for 10 h, or with air for 5 h and subsequently with hydrogen sulfide for 5 h. Histology, interleukin-1β, neutrophil counts, and reactive oxygen species formation were examined in the lungs. Both pre-and posttreatment with hydrogen sulfide time-dependently reduced or even prevented edema formation, gross histological damage, neutrophil influx and reactive oxygen species production in the lung. These results were also observed in posttreatment, when the experimental time was extended and hydrogen sulfide administration started as late as after 5 h air ventilation. In conclusion, hydrogen sulfide exerts lung protection even when its application is limited to a short or delayed period. The observed lung protection is mediated by inhibition of inflammatory and oxidative signaling. |
first_indexed | 2024-12-14T00:06:50Z |
format | Article |
id | doaj.art-f8662a426c4d4abeb36ff857ed84949b |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-12-14T00:06:50Z |
publishDate | 2017-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-f8662a426c4d4abeb36ff857ed84949b2022-12-21T23:25:59ZengPublic Library of Science (PLoS)PLoS ONE1932-62032017-01-01124e017664910.1371/journal.pone.0176649Pre- and posttreatment with hydrogen sulfide prevents ventilator-induced lung injury by limiting inflammation and oxidation.Simone FallerRaphael SeilerRosa DonusHelen EngelstaedterAlexander HoetzelSashko Gregoriev SpassovAlthough essential in critical care medicine, mechanical ventilation often results in ventilator-induced lung injury. Low concentrations of hydrogen sulfide have been proven to have anti-inflammatory and anti-oxidative effects in the lung. The aim of this study was to analyze the kinetic effects of pre- and posttreatment with hydrogen sulfide in order to prevent lung injury as well as inflammatory and oxidative stress upon mechanical ventilation. Mice were either non-ventilated or mechanically ventilated with a tidal volume of 12 ml/kg for 6 h. Pretreated mice inhaled hydrogen sulfide in low dose for 1, 3, or 5 h prior to mechanical ventilation. Posttreated mice were ventilated with air followed by ventilation with hydrogen sulfide in various combinations. In addition, mice were ventilated with air for 10 h, or with air for 5 h and subsequently with hydrogen sulfide for 5 h. Histology, interleukin-1β, neutrophil counts, and reactive oxygen species formation were examined in the lungs. Both pre-and posttreatment with hydrogen sulfide time-dependently reduced or even prevented edema formation, gross histological damage, neutrophil influx and reactive oxygen species production in the lung. These results were also observed in posttreatment, when the experimental time was extended and hydrogen sulfide administration started as late as after 5 h air ventilation. In conclusion, hydrogen sulfide exerts lung protection even when its application is limited to a short or delayed period. The observed lung protection is mediated by inhibition of inflammatory and oxidative signaling.http://europepmc.org/articles/PMC5409137?pdf=render |
spellingShingle | Simone Faller Raphael Seiler Rosa Donus Helen Engelstaedter Alexander Hoetzel Sashko Gregoriev Spassov Pre- and posttreatment with hydrogen sulfide prevents ventilator-induced lung injury by limiting inflammation and oxidation. PLoS ONE |
title | Pre- and posttreatment with hydrogen sulfide prevents ventilator-induced lung injury by limiting inflammation and oxidation. |
title_full | Pre- and posttreatment with hydrogen sulfide prevents ventilator-induced lung injury by limiting inflammation and oxidation. |
title_fullStr | Pre- and posttreatment with hydrogen sulfide prevents ventilator-induced lung injury by limiting inflammation and oxidation. |
title_full_unstemmed | Pre- and posttreatment with hydrogen sulfide prevents ventilator-induced lung injury by limiting inflammation and oxidation. |
title_short | Pre- and posttreatment with hydrogen sulfide prevents ventilator-induced lung injury by limiting inflammation and oxidation. |
title_sort | pre and posttreatment with hydrogen sulfide prevents ventilator induced lung injury by limiting inflammation and oxidation |
url | http://europepmc.org/articles/PMC5409137?pdf=render |
work_keys_str_mv | AT simonefaller preandposttreatmentwithhydrogensulfidepreventsventilatorinducedlunginjurybylimitinginflammationandoxidation AT raphaelseiler preandposttreatmentwithhydrogensulfidepreventsventilatorinducedlunginjurybylimitinginflammationandoxidation AT rosadonus preandposttreatmentwithhydrogensulfidepreventsventilatorinducedlunginjurybylimitinginflammationandoxidation AT helenengelstaedter preandposttreatmentwithhydrogensulfidepreventsventilatorinducedlunginjurybylimitinginflammationandoxidation AT alexanderhoetzel preandposttreatmentwithhydrogensulfidepreventsventilatorinducedlunginjurybylimitinginflammationandoxidation AT sashkogregorievspassov preandposttreatmentwithhydrogensulfidepreventsventilatorinducedlunginjurybylimitinginflammationandoxidation |