Evaluation of Eigenvalue and Block Diagonalization Beamforming Precoding Performance for 5G Technology over Rician Channel

In traditional wireless cellular, at the same cell, users can cause co-channel interference (CCI) between each other; CCI can deteriorate the channel’s capacity. A multiple-input multiple-output (MIMO) system with beamforming technology solves this CCI problem. Exploiting the channel state informati...

Full description

Bibliographic Details
Main Authors: Cebrail Çiflikli, Musaab Al-Obaidi
Format: Article
Language:English
Published: Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek 2019-01-01
Series:Tehnički Vjesnik
Subjects:
Online Access:https://hrcak.srce.hr/file/320399
Description
Summary:In traditional wireless cellular, at the same cell, users can cause co-channel interference (CCI) between each other; CCI can deteriorate the channel’s capacity. A multiple-input multiple-output (MIMO) system with beamforming technology solves this CCI problem. Exploiting the channel state information (CSI) in a multi-user MIMO (MU-MIMO) system can improve the performance of the channel link by designing the precoding vectors for every user. A linear precoder has multiple methods, like Block diagonalization precoding (BDP) and Eigenvalue precoding (EP) that facilitate its use. This paper evaluates the symbol-detection performance for BDP and EP in MU-MIMO beamforming over a Rayleigh fading channel. Then, the channel matrix replaces the typical channel assumption with its correlated realistic Rician fading channel. Simulation results show that the Rician fading channel has performance improvement until with low Rician factor value, compared to a conventional channel. The high value of the Rician factor can reduce the error rate.
ISSN:1330-3651
1848-6339