GUY1 confers complete female lethality and is a strong candidate for a male-determining factor in Anopheles stephensi
Despite their importance in sexual differentiation and reproduction, Y chromosome genes are rarely described because they reside in repeat-rich regions that are difficult to study. Here, we show that Guy1, a unique Y chromosome gene of a major urban malaria mosquito Anopheles stephensi, confers 100%...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
eLife Sciences Publications Ltd
2016-09-01
|
Series: | eLife |
Subjects: | |
Online Access: | https://elifesciences.org/articles/19281 |
_version_ | 1818018967867883520 |
---|---|
author | Frank Criscione Yumin Qi Zhijian Tu |
author_facet | Frank Criscione Yumin Qi Zhijian Tu |
author_sort | Frank Criscione |
collection | DOAJ |
description | Despite their importance in sexual differentiation and reproduction, Y chromosome genes are rarely described because they reside in repeat-rich regions that are difficult to study. Here, we show that Guy1, a unique Y chromosome gene of a major urban malaria mosquito Anopheles stephensi, confers 100% female lethality when placed on the autosomes. We show that the small GUY1 protein (56 amino acids in length) causes female lethality and that males carrying the transgene are reproductively more competitive than their non-transgenic siblings under laboratory conditions. The GUY1 protein is a primary signal from the Y chromosome that affects embryonic development in a sex-specific manner. Our results have demonstrated, for the first time in mosquitoes, the feasibility of stable transgenic manipulation of sex ratios using an endogenous gene from the male-determining chromosome. These results provide insights into the elusive M factor and suggest exciting opportunities to reduce mosquito populations and disease transmission. |
first_indexed | 2024-04-14T07:46:40Z |
format | Article |
id | doaj.art-f878d8cc8afd4da39a3847ec0345647b |
institution | Directory Open Access Journal |
issn | 2050-084X |
language | English |
last_indexed | 2024-04-14T07:46:40Z |
publishDate | 2016-09-01 |
publisher | eLife Sciences Publications Ltd |
record_format | Article |
series | eLife |
spelling | doaj.art-f878d8cc8afd4da39a3847ec0345647b2022-12-22T02:05:19ZengeLife Sciences Publications LtdeLife2050-084X2016-09-01510.7554/eLife.19281GUY1 confers complete female lethality and is a strong candidate for a male-determining factor in Anopheles stephensiFrank Criscione0Yumin Qi1Zhijian Tu2https://orcid.org/0000-0003-4227-3819Department of Biochemistry, Virginia Tech, Blacksburg, United StatesDepartment of Biochemistry, Virginia Tech, Blacksburg, United StatesDepartment of Biochemistry, Virginia Tech, Blacksburg, United StatesDespite their importance in sexual differentiation and reproduction, Y chromosome genes are rarely described because they reside in repeat-rich regions that are difficult to study. Here, we show that Guy1, a unique Y chromosome gene of a major urban malaria mosquito Anopheles stephensi, confers 100% female lethality when placed on the autosomes. We show that the small GUY1 protein (56 amino acids in length) causes female lethality and that males carrying the transgene are reproductively more competitive than their non-transgenic siblings under laboratory conditions. The GUY1 protein is a primary signal from the Y chromosome that affects embryonic development in a sex-specific manner. Our results have demonstrated, for the first time in mosquitoes, the feasibility of stable transgenic manipulation of sex ratios using an endogenous gene from the male-determining chromosome. These results provide insights into the elusive M factor and suggest exciting opportunities to reduce mosquito populations and disease transmission.https://elifesciences.org/articles/19281Anophelesmalariasex-determinationembryonic developmentY chromosome |
spellingShingle | Frank Criscione Yumin Qi Zhijian Tu GUY1 confers complete female lethality and is a strong candidate for a male-determining factor in Anopheles stephensi eLife Anopheles malaria sex-determination embryonic development Y chromosome |
title | GUY1 confers complete female lethality and is a strong candidate for a male-determining factor in Anopheles stephensi |
title_full | GUY1 confers complete female lethality and is a strong candidate for a male-determining factor in Anopheles stephensi |
title_fullStr | GUY1 confers complete female lethality and is a strong candidate for a male-determining factor in Anopheles stephensi |
title_full_unstemmed | GUY1 confers complete female lethality and is a strong candidate for a male-determining factor in Anopheles stephensi |
title_short | GUY1 confers complete female lethality and is a strong candidate for a male-determining factor in Anopheles stephensi |
title_sort | guy1 confers complete female lethality and is a strong candidate for a male determining factor in anopheles stephensi |
topic | Anopheles malaria sex-determination embryonic development Y chromosome |
url | https://elifesciences.org/articles/19281 |
work_keys_str_mv | AT frankcriscione guy1conferscompletefemalelethalityandisastrongcandidateforamaledeterminingfactorinanophelesstephensi AT yuminqi guy1conferscompletefemalelethalityandisastrongcandidateforamaledeterminingfactorinanophelesstephensi AT zhijiantu guy1conferscompletefemalelethalityandisastrongcandidateforamaledeterminingfactorinanophelesstephensi |