Achieve High Dielectric and Energy-Storage Density Properties by Employing Cyanoethyl Cellulose as Fillers in PVDF-Based Polymer Composites
Fluoropolymer/inorganic nanofiller composites are considered to be ideal polymer dielectrics for energy storage applications because of their high dielectric constant and high breakdown strength. However, these advantages are a trade-off with the unavoidable aggregation of the inorganic nanofillers,...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-06-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/16/12/4201 |
Summary: | Fluoropolymer/inorganic nanofiller composites are considered to be ideal polymer dielectrics for energy storage applications because of their high dielectric constant and high breakdown strength. However, these advantages are a trade-off with the unavoidable aggregation of the inorganic nanofillers, which result in a reduced discharge of the energy storage density. To address this problem, we developed polyvinylidene fluoride (PVDF) graft copolymer/cellulose-derivative composites to achieve high-dielectric and energy-storage density properties. An enhanced dielectric constant and improved energy density were achieved with this structure. The optimal composites exhibited a high discharge energy density of 8.40 J/cm<sup>3</sup> at 300 MV/m. This work provides new insight into the development of all-organic composites with bio-based nanofillers. |
---|---|
ISSN: | 1996-1944 |