Robust Localization for Robot and IoT Using RSSI

Node-localization technology has been supported in the wireless sensor network (WSN) environment. Node localization is based on a few access-point (AP) nodes that comprises positioning information because they are fixed, and a beacon node that comprises unknown positioning information because it is...

Full description

Bibliographic Details
Main Author: Youngchul Bae
Format: Article
Language:English
Published: MDPI AG 2019-06-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/12/11/2212
Description
Summary:Node-localization technology has been supported in the wireless sensor network (WSN) environment. Node localization is based on a few access-point (AP) nodes that comprises positioning information because they are fixed, and a beacon node that comprises unknown positioning information because it is moving. To determine the position of the unknown node, it must use two or three APs that comprise certain positioning information. There are a number of representative range-based methods, including time of arrival (TOA), weighted centroid locating algorithm, received signal strength intensity (RSSI), and time difference of arrival (TDOA) signal, that are received by the receiver. The RSSI method has its advantages. A simple device structure means that the RSSI method is easy to use. Because the structures of previous wireless local area network (LAN) technologies make them compatible with RSSI information, the RSSI method is widely used in the related area of position tracking. In addition, this algorithm has a hardware system that cannot be increased, has the advantage of the miniaturization of the node, and can wear through obstacles. This paper proposes the application of a robust ranging method that can be applied in robots and Internet of Things (IoT) using RSSI, especially in the tracing location of each nursing home patient, where the RSSI method with trilateral technique is used. This paper shows the results of the measured point from the application of the trilateral technique, and it also represents the results of the error distance between the ideal point and the measured point using computer simulation. Finally, this paper presents an estimation of localization using a real experimental device with a BLE (Bluetooth low-energy) transmitter and receiver, and beacon gateway, by applying an RSSI algorithm with the trilateral technique.
ISSN:1996-1073