Assessing the Risk of Exposure to Aflatoxin B1 through the Consumption of Peanuts among Children Aged 6–59 Months in the Lusaka District, Zambia

Aflatoxins B1 (AFB1) are fungi-produced toxins found in crops like peanuts, maize, and tree nuts. They constitute a public health concern due to their genotoxic and carcinogenic effects. A deterministic exposure risk assessment to AFB1 through the consumption of peanuts was conducted on children usi...

Full description

Bibliographic Details
Main Authors: Grace Musawa, Flavien Nsoni Bumbangi, Chisoni Mumba, Branly Kilola Mbunga, Gladys Phiri, Vistorina Benhard, Henson Kainga, Mkuzi Banda, Enock Ndaki, Ethel Mkandawire, John Bwalya Muma
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Toxins
Subjects:
Online Access:https://www.mdpi.com/2072-6651/16/1/50
Description
Summary:Aflatoxins B1 (AFB1) are fungi-produced toxins found in crops like peanuts, maize, and tree nuts. They constitute a public health concern due to their genotoxic and carcinogenic effects. A deterministic exposure risk assessment to AFB1 through the consumption of peanuts was conducted on children using the Margin of Exposure (MOE) and the liver cancer risk approaches. Data on AFB1 concentrations in peanuts, quantities of peanut consumption, and the weights of the children were obtained from the literature. Generally, MOE values were below the safe margin of 10,000, ranging between 3.68 and 0.14, 754.34 and 27.33, and 11,428.57 and 419.05 for the high (0.0466 ng/kg), median (0.00023 ng/kg), and low (0.000015 ng/kg) AFB1 concentration levels, respectively. The liver cancer risk upon lifetime exposure to highly AFB1-contaminated peanuts (0.0466 ng/kg) ranged between 1 and 23 (95% lower bound) and 2 and 50 (95% upper bound) cases in a million individuals: a public health concern. A low liver cancer risk (≤1 case in a billion individuals upon lifetime exposure) was shown at median and low AFB1 concentrations. However, the risk of AFB1 should be a priority for risk management since its harmful effects could be potentiated by poor diet, high malnutrition levels, and other disease burdens in Zambia’s children.
ISSN:2072-6651