Positive solutions for a Kirchhoff type problem with fast increasing weight and critical nonlinearity

In this paper, we study the following Kirchhoff type problem \[ -\left(a+b\int_{\mathbb{R}^3} K(x)|\nabla u|^2dx\right)\hbox{div}(K(x)\nabla u)=\lambda K(x)|x|^{\beta}|u|^{q-2}u+K(x)|u|^{4}u,\quad x\in \mathbb{R}^3, \] where $K(x)=\exp({|x|^{\alpha}/4})$ with $\alpha\geq2$, $\beta=(\alpha-2)(6-q)...

Full description

Bibliographic Details
Main Authors: Xiaotao Qian, Wen Chao
Format: Article
Language:English
Published: University of Szeged 2019-04-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=7402
Description
Summary:In this paper, we study the following Kirchhoff type problem \[ -\left(a+b\int_{\mathbb{R}^3} K(x)|\nabla u|^2dx\right)\hbox{div}(K(x)\nabla u)=\lambda K(x)|x|^{\beta}|u|^{q-2}u+K(x)|u|^{4}u,\quad x\in \mathbb{R}^3, \] where $K(x)=\exp({|x|^{\alpha}/4})$ with $\alpha\geq2$, $\beta=(\alpha-2)(6-q)/4$ and the parameters $a, b, \lambda >0$. When $6-\frac{4}{\alpha}<q<6$, we obtain a positive ground state solution for any $\lambda>0$. When $2<q<4$, we obtain a positive solution for $\lambda>0$ small enough. In the proof we use variational methods.
ISSN:1417-3875