Multiple Control Policy in Unreliable Two-Phase Bulk Queueing System with Active Bernoulli Feedback and Vacation

In this paper, a bulk arrival and two-phase bulk service with active Bernoulli feedback, vacation, and breakdown is considered. The server provides service in two phases as mandatory according to the general bulk service rule, with minimum bulk size <inline-formula><math xmlns="http://...

Full description

Bibliographic Details
Main Authors: S. P. Niranjan, S. Devi Latha, Miroslav Mahdal, Krishnasamy Karthik
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/1/75
_version_ 1797358502628294656
author S. P. Niranjan
S. Devi Latha
Miroslav Mahdal
Krishnasamy Karthik
author_facet S. P. Niranjan
S. Devi Latha
Miroslav Mahdal
Krishnasamy Karthik
author_sort S. P. Niranjan
collection DOAJ
description In this paper, a bulk arrival and two-phase bulk service with active Bernoulli feedback, vacation, and breakdown is considered. The server provides service in two phases as mandatory according to the general bulk service rule, with minimum bulk size <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mo>′</mo></msup><msup><mi>a</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula> and maximum bulk size <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mo>′</mo></msup><msup><mi>b</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula>. In the first essential service (FES) completion epoch, if the server fails, with probability <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mo>′</mo></msup><msup><mi mathvariant="sans-serif">δ</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula>, then the renewal of the service station is considered. On the other hand, if there is no server failure, with a probability <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mo>′</mo></msup><mn>1</mn><mo>−</mo><msup><mi>δ</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula>, then the server switches to a second essential service (SES) in succession. A customer who requires further service as feedback is given priority, and they join the head of the queue with probability <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi></mrow></semantics></math></inline-formula>. On the contrary, a customer who does not require feedback leaves the system with a probability <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mo>′</mo></msup><mn>1</mn><mo>−</mo><msup><mi>β</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula>. If the queue length is less than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mo>′</mo></msup><msup><mi>a</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula> after SES, the server may leave for a single vacation with probability <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mo>′</mo></msup><mn>1</mn><mo>−</mo><msup><mrow><mi>β</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></semantics></math></inline-formula>. When the server finds an inadequate number of customers in the queue after vacation completion, the server becomes dormant. After vacation completion, the server requires some time to start service, which is attained by including setup time. The setup time is initiated only when the queue length is at least <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mo>′</mo></msup><msup><mi>a</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula>. Even after setup time completion, the service process begins only with a queue length ‘<i>N</i>’ (<i>N</i> > <i>b</i>). The novelty of this paper is that it introduces an essential two-phase bulk service, immediate Bernoulli feedback for customers, and renewal service time of the first essential service for the bulk arrival and bulk service queueing model. We aim to develop a model that investigates the probability-generating function of the queue size at any time. Additionally, we analyzed various performance characteristics using numerical examples to demonstrate the model’s effectiveness. An optimum cost analysis was also carried out to minimize the total average cost with appropriate practical applications in existing data transmission and data processing in LTE-A networks using the DRX mechanism.
first_indexed 2024-03-08T15:02:57Z
format Article
id doaj.art-f88d9b00a6724eb2ae24ef7383cffba0
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-08T15:02:57Z
publishDate 2023-12-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-f88d9b00a6724eb2ae24ef7383cffba02024-01-10T15:03:31ZengMDPI AGMathematics2227-73902023-12-011217510.3390/math12010075Multiple Control Policy in Unreliable Two-Phase Bulk Queueing System with Active Bernoulli Feedback and VacationS. P. Niranjan0S. Devi Latha1Miroslav Mahdal2Krishnasamy Karthik3Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600062, IndiaDepartment of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600062, IndiaDepartment of Control Systems and Instrumentation, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, 17, Listopadu 2172/15, 70800 Ostrava, Czech RepublicDepartment of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600062, IndiaIn this paper, a bulk arrival and two-phase bulk service with active Bernoulli feedback, vacation, and breakdown is considered. The server provides service in two phases as mandatory according to the general bulk service rule, with minimum bulk size <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mo>′</mo></msup><msup><mi>a</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula> and maximum bulk size <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mo>′</mo></msup><msup><mi>b</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula>. In the first essential service (FES) completion epoch, if the server fails, with probability <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mo>′</mo></msup><msup><mi mathvariant="sans-serif">δ</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula>, then the renewal of the service station is considered. On the other hand, if there is no server failure, with a probability <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mo>′</mo></msup><mn>1</mn><mo>−</mo><msup><mi>δ</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula>, then the server switches to a second essential service (SES) in succession. A customer who requires further service as feedback is given priority, and they join the head of the queue with probability <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi></mrow></semantics></math></inline-formula>. On the contrary, a customer who does not require feedback leaves the system with a probability <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mo>′</mo></msup><mn>1</mn><mo>−</mo><msup><mi>β</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula>. If the queue length is less than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mo>′</mo></msup><msup><mi>a</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula> after SES, the server may leave for a single vacation with probability <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mo>′</mo></msup><mn>1</mn><mo>−</mo><msup><mrow><mi>β</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></semantics></math></inline-formula>. When the server finds an inadequate number of customers in the queue after vacation completion, the server becomes dormant. After vacation completion, the server requires some time to start service, which is attained by including setup time. The setup time is initiated only when the queue length is at least <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mo>′</mo></msup><msup><mi>a</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula>. Even after setup time completion, the service process begins only with a queue length ‘<i>N</i>’ (<i>N</i> > <i>b</i>). The novelty of this paper is that it introduces an essential two-phase bulk service, immediate Bernoulli feedback for customers, and renewal service time of the first essential service for the bulk arrival and bulk service queueing model. We aim to develop a model that investigates the probability-generating function of the queue size at any time. Additionally, we analyzed various performance characteristics using numerical examples to demonstrate the model’s effectiveness. An optimum cost analysis was also carried out to minimize the total average cost with appropriate practical applications in existing data transmission and data processing in LTE-A networks using the DRX mechanism.https://www.mdpi.com/2227-7390/12/1/75multiple control policyrenewal timebreakdownBernoulli feedback
spellingShingle S. P. Niranjan
S. Devi Latha
Miroslav Mahdal
Krishnasamy Karthik
Multiple Control Policy in Unreliable Two-Phase Bulk Queueing System with Active Bernoulli Feedback and Vacation
Mathematics
multiple control policy
renewal time
breakdown
Bernoulli feedback
title Multiple Control Policy in Unreliable Two-Phase Bulk Queueing System with Active Bernoulli Feedback and Vacation
title_full Multiple Control Policy in Unreliable Two-Phase Bulk Queueing System with Active Bernoulli Feedback and Vacation
title_fullStr Multiple Control Policy in Unreliable Two-Phase Bulk Queueing System with Active Bernoulli Feedback and Vacation
title_full_unstemmed Multiple Control Policy in Unreliable Two-Phase Bulk Queueing System with Active Bernoulli Feedback and Vacation
title_short Multiple Control Policy in Unreliable Two-Phase Bulk Queueing System with Active Bernoulli Feedback and Vacation
title_sort multiple control policy in unreliable two phase bulk queueing system with active bernoulli feedback and vacation
topic multiple control policy
renewal time
breakdown
Bernoulli feedback
url https://www.mdpi.com/2227-7390/12/1/75
work_keys_str_mv AT spniranjan multiplecontrolpolicyinunreliabletwophasebulkqueueingsystemwithactivebernoullifeedbackandvacation
AT sdevilatha multiplecontrolpolicyinunreliabletwophasebulkqueueingsystemwithactivebernoullifeedbackandvacation
AT miroslavmahdal multiplecontrolpolicyinunreliabletwophasebulkqueueingsystemwithactivebernoullifeedbackandvacation
AT krishnasamykarthik multiplecontrolpolicyinunreliabletwophasebulkqueueingsystemwithactivebernoullifeedbackandvacation