Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian Noise

Noise suppression algorithms have been used in various tasks such as computer vision, industrial inspection, and video surveillance, among others. The robust image processing systems need to be fed with images closer to a real scene; however, sometimes, due to external factors, the data that represe...

Full description

Bibliographic Details
Main Authors: Armando Adrián Miranda-González, Alberto Jorge Rosales-Silva, Dante Mújica-Vargas, Ponciano Jorge Escamilla-Ambrosio, Francisco Javier Gallegos-Funes, Jean Marie Vianney-Kinani, Erick Velázquez-Lozada, Luis Manuel Pérez-Hernández, Lucero Verónica Lozano-Vázquez
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/25/10/1467
_version_ 1827721103846408192
author Armando Adrián Miranda-González
Alberto Jorge Rosales-Silva
Dante Mújica-Vargas
Ponciano Jorge Escamilla-Ambrosio
Francisco Javier Gallegos-Funes
Jean Marie Vianney-Kinani
Erick Velázquez-Lozada
Luis Manuel Pérez-Hernández
Lucero Verónica Lozano-Vázquez
author_facet Armando Adrián Miranda-González
Alberto Jorge Rosales-Silva
Dante Mújica-Vargas
Ponciano Jorge Escamilla-Ambrosio
Francisco Javier Gallegos-Funes
Jean Marie Vianney-Kinani
Erick Velázquez-Lozada
Luis Manuel Pérez-Hernández
Lucero Verónica Lozano-Vázquez
author_sort Armando Adrián Miranda-González
collection DOAJ
description Noise suppression algorithms have been used in various tasks such as computer vision, industrial inspection, and video surveillance, among others. The robust image processing systems need to be fed with images closer to a real scene; however, sometimes, due to external factors, the data that represent the image captured are altered, which is translated into a loss of information. In this way, there are required procedures to recover data information closest to the real scene. This research project proposes a Denoising Vanilla Autoencoding (<i>DVA</i>) architecture by means of unsupervised neural networks for Gaussian denoising in color and grayscale images. The methodology improves other state-of-the-art architectures by means of objective numerical results. Additionally, a validation set and a high-resolution noisy image set are used, which reveal that our proposal outperforms other types of neural networks responsible for suppressing noise in images.
first_indexed 2024-03-10T21:17:09Z
format Article
id doaj.art-f8ac472021d64202a7e51077f13a6b85
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-10T21:17:09Z
publishDate 2023-10-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-f8ac472021d64202a7e51077f13a6b852023-11-19T16:25:20ZengMDPI AGEntropy1099-43002023-10-012510146710.3390/e25101467Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian NoiseArmando Adrián Miranda-González0Alberto Jorge Rosales-Silva1Dante Mújica-Vargas2Ponciano Jorge Escamilla-Ambrosio3Francisco Javier Gallegos-Funes4Jean Marie Vianney-Kinani5Erick Velázquez-Lozada6Luis Manuel Pérez-Hernández7Lucero Verónica Lozano-Vázquez8Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, Mexico City 07738, MexicoEscuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, Mexico City 07738, MexicoDepartamento de Ciencias Computacionales, Tecnológico Nacional de México, Cuernavaca 62490, MexicoCentro de Investigación en Computación, Instituto Politécnico Nacional, Mexico City 07738, MexicoEscuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, Mexico City 07738, MexicoDepartamento de Ciencias Computacionales, Tecnológico Nacional de México, Cuernavaca 62490, MexicoEscuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, Mexico City 07738, MexicoEscuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, Mexico City 07738, MexicoEscuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, Mexico City 07738, MexicoNoise suppression algorithms have been used in various tasks such as computer vision, industrial inspection, and video surveillance, among others. The robust image processing systems need to be fed with images closer to a real scene; however, sometimes, due to external factors, the data that represent the image captured are altered, which is translated into a loss of information. In this way, there are required procedures to recover data information closest to the real scene. This research project proposes a Denoising Vanilla Autoencoding (<i>DVA</i>) architecture by means of unsupervised neural networks for Gaussian denoising in color and grayscale images. The methodology improves other state-of-the-art architectures by means of objective numerical results. Additionally, a validation set and a high-resolution noisy image set are used, which reveal that our proposal outperforms other types of neural networks responsible for suppressing noise in images.https://www.mdpi.com/1099-4300/25/10/1467denoising vanilla autoencoderimagesnoise
spellingShingle Armando Adrián Miranda-González
Alberto Jorge Rosales-Silva
Dante Mújica-Vargas
Ponciano Jorge Escamilla-Ambrosio
Francisco Javier Gallegos-Funes
Jean Marie Vianney-Kinani
Erick Velázquez-Lozada
Luis Manuel Pérez-Hernández
Lucero Verónica Lozano-Vázquez
Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian Noise
Entropy
denoising vanilla autoencoder
images
noise
title Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian Noise
title_full Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian Noise
title_fullStr Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian Noise
title_full_unstemmed Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian Noise
title_short Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian Noise
title_sort denoising vanilla autoencoder for rgb and gs images with gaussian noise
topic denoising vanilla autoencoder
images
noise
url https://www.mdpi.com/1099-4300/25/10/1467
work_keys_str_mv AT armandoadrianmirandagonzalez denoisingvanillaautoencoderforrgbandgsimageswithgaussiannoise
AT albertojorgerosalessilva denoisingvanillaautoencoderforrgbandgsimageswithgaussiannoise
AT dantemujicavargas denoisingvanillaautoencoderforrgbandgsimageswithgaussiannoise
AT poncianojorgeescamillaambrosio denoisingvanillaautoencoderforrgbandgsimageswithgaussiannoise
AT franciscojaviergallegosfunes denoisingvanillaautoencoderforrgbandgsimageswithgaussiannoise
AT jeanmarievianneykinani denoisingvanillaautoencoderforrgbandgsimageswithgaussiannoise
AT erickvelazquezlozada denoisingvanillaautoencoderforrgbandgsimageswithgaussiannoise
AT luismanuelperezhernandez denoisingvanillaautoencoderforrgbandgsimageswithgaussiannoise
AT luceroveronicalozanovazquez denoisingvanillaautoencoderforrgbandgsimageswithgaussiannoise