Structural and functional consequences of the STAT5BN642H driver mutation
Hyper-activated STAT5B and its disease-causing variants are of interest as cancer drug targets. Here the authors combine cell based studies, X-ray crystallography, biophysical experiments and MD simulations to structurally and functionally characterize the STAT5BN642H mutant found in aggressive T-ce...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2019-06-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-019-10422-7 |
Summary: | Hyper-activated STAT5B and its disease-causing variants are of interest as cancer drug targets. Here the authors combine cell based studies, X-ray crystallography, biophysical experiments and MD simulations to structurally and functionally characterize the STAT5BN642H mutant found in aggressive T-cell leukemia and lymphomas and find that it has an increased affinity for self-dimerization. |
---|---|
ISSN: | 2041-1723 |