An ITK Implementation of a Physics-based Non-rigid Registration Method for Brain Deformation in Image-guided Neurosurgery

As part of the ITK v4 project efforts, we have developed ITK filters for physics-based non-rigid registration (PBNRR), which satisfies the following requirements: account for tissue properties in the registration, improve accuracy compared to rigid registration, and reduce execution time using GPU a...

Full description

Bibliographic Details
Main Authors: Yixun eLiu, Andriy eKot, Fotis eDrakopoulos, Chengjun eYao, Andrey eFedorov, Andinet eEnquobahrie, Olivier eClatz, Nikos P Chrisochoides
Format: Article
Language:English
Published: Frontiers Media S.A. 2014-04-01
Series:Frontiers in Neuroinformatics
Subjects:
Online Access:http://journal.frontiersin.org/Journal/10.3389/fninf.2014.00033/full
_version_ 1818253775708618752
author Yixun eLiu
Yixun eLiu
Andriy eKot
Fotis eDrakopoulos
Chengjun eYao
Andrey eFedorov
Andrey eFedorov
Andinet eEnquobahrie
Olivier eClatz
Nikos P Chrisochoides
author_facet Yixun eLiu
Yixun eLiu
Andriy eKot
Fotis eDrakopoulos
Chengjun eYao
Andrey eFedorov
Andrey eFedorov
Andinet eEnquobahrie
Olivier eClatz
Nikos P Chrisochoides
author_sort Yixun eLiu
collection DOAJ
description As part of the ITK v4 project efforts, we have developed ITK filters for physics-based non-rigid registration (PBNRR), which satisfies the following requirements: account for tissue properties in the registration, improve accuracy compared to rigid registration, and reduce execution time using GPU and multi-core accelerators. The implementation has three main components: (1) Feature Point Selection, (2) Block Matching (mapped to both multi-core and GPU processors), and (3) a Robust Finite Element Solver. The use of multi-core and GPU accelerators in ITK v4 provides substantial performance improvements. For example, for the non-rigid registration of brain MRIs, the performance of the block matching filter on average is about 10 times faster when 12 hyperthreaded multi-cores are used and about 83 times faster when the NVIDIA Tesla GPU is used in Dell Workstation.
first_indexed 2024-12-12T16:45:26Z
format Article
id doaj.art-f8cb663b28b04158918d2852fbf2426a
institution Directory Open Access Journal
issn 1662-5196
language English
last_indexed 2024-12-12T16:45:26Z
publishDate 2014-04-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Neuroinformatics
spelling doaj.art-f8cb663b28b04158918d2852fbf2426a2022-12-22T00:18:29ZengFrontiers Media S.A.Frontiers in Neuroinformatics1662-51962014-04-01810.3389/fninf.2014.0003367311An ITK Implementation of a Physics-based Non-rigid Registration Method for Brain Deformation in Image-guided NeurosurgeryYixun eLiu0Yixun eLiu1Andriy eKot2Fotis eDrakopoulos3Chengjun eYao4Andrey eFedorov5Andrey eFedorov6Andinet eEnquobahrie7Olivier eClatz8Nikos P Chrisochoides9Old Dominion UniversityNational Institutes of HealthOld Dominion UniversityOld Dominion UniversityHuashanOld Dominion UniversityBrigham And Women’s Hospital, Harvard Medical SchoolKitwareAsclepios Research Laboratory, INRIA Sophia AntipolisOld Dominion UniversityAs part of the ITK v4 project efforts, we have developed ITK filters for physics-based non-rigid registration (PBNRR), which satisfies the following requirements: account for tissue properties in the registration, improve accuracy compared to rigid registration, and reduce execution time using GPU and multi-core accelerators. The implementation has three main components: (1) Feature Point Selection, (2) Block Matching (mapped to both multi-core and GPU processors), and (3) a Robust Finite Element Solver. The use of multi-core and GPU accelerators in ITK v4 provides substantial performance improvements. For example, for the non-rigid registration of brain MRIs, the performance of the block matching filter on average is about 10 times faster when 12 hyperthreaded multi-cores are used and about 83 times faster when the NVIDIA Tesla GPU is used in Dell Workstation.http://journal.frontiersin.org/Journal/10.3389/fninf.2014.00033/fullgpubiomechanical modelITKnon-rigid registrationtumor resectionimage-guided neurosurgery
spellingShingle Yixun eLiu
Yixun eLiu
Andriy eKot
Fotis eDrakopoulos
Chengjun eYao
Andrey eFedorov
Andrey eFedorov
Andinet eEnquobahrie
Olivier eClatz
Nikos P Chrisochoides
An ITK Implementation of a Physics-based Non-rigid Registration Method for Brain Deformation in Image-guided Neurosurgery
Frontiers in Neuroinformatics
gpu
biomechanical model
ITK
non-rigid registration
tumor resection
image-guided neurosurgery
title An ITK Implementation of a Physics-based Non-rigid Registration Method for Brain Deformation in Image-guided Neurosurgery
title_full An ITK Implementation of a Physics-based Non-rigid Registration Method for Brain Deformation in Image-guided Neurosurgery
title_fullStr An ITK Implementation of a Physics-based Non-rigid Registration Method for Brain Deformation in Image-guided Neurosurgery
title_full_unstemmed An ITK Implementation of a Physics-based Non-rigid Registration Method for Brain Deformation in Image-guided Neurosurgery
title_short An ITK Implementation of a Physics-based Non-rigid Registration Method for Brain Deformation in Image-guided Neurosurgery
title_sort itk implementation of a physics based non rigid registration method for brain deformation in image guided neurosurgery
topic gpu
biomechanical model
ITK
non-rigid registration
tumor resection
image-guided neurosurgery
url http://journal.frontiersin.org/Journal/10.3389/fninf.2014.00033/full
work_keys_str_mv AT yixuneliu anitkimplementationofaphysicsbasednonrigidregistrationmethodforbraindeformationinimageguidedneurosurgery
AT yixuneliu anitkimplementationofaphysicsbasednonrigidregistrationmethodforbraindeformationinimageguidedneurosurgery
AT andriyekot anitkimplementationofaphysicsbasednonrigidregistrationmethodforbraindeformationinimageguidedneurosurgery
AT fotisedrakopoulos anitkimplementationofaphysicsbasednonrigidregistrationmethodforbraindeformationinimageguidedneurosurgery
AT chengjuneyao anitkimplementationofaphysicsbasednonrigidregistrationmethodforbraindeformationinimageguidedneurosurgery
AT andreyefedorov anitkimplementationofaphysicsbasednonrigidregistrationmethodforbraindeformationinimageguidedneurosurgery
AT andreyefedorov anitkimplementationofaphysicsbasednonrigidregistrationmethodforbraindeformationinimageguidedneurosurgery
AT andineteenquobahrie anitkimplementationofaphysicsbasednonrigidregistrationmethodforbraindeformationinimageguidedneurosurgery
AT oliviereclatz anitkimplementationofaphysicsbasednonrigidregistrationmethodforbraindeformationinimageguidedneurosurgery
AT nikospchrisochoides anitkimplementationofaphysicsbasednonrigidregistrationmethodforbraindeformationinimageguidedneurosurgery
AT yixuneliu itkimplementationofaphysicsbasednonrigidregistrationmethodforbraindeformationinimageguidedneurosurgery
AT yixuneliu itkimplementationofaphysicsbasednonrigidregistrationmethodforbraindeformationinimageguidedneurosurgery
AT andriyekot itkimplementationofaphysicsbasednonrigidregistrationmethodforbraindeformationinimageguidedneurosurgery
AT fotisedrakopoulos itkimplementationofaphysicsbasednonrigidregistrationmethodforbraindeformationinimageguidedneurosurgery
AT chengjuneyao itkimplementationofaphysicsbasednonrigidregistrationmethodforbraindeformationinimageguidedneurosurgery
AT andreyefedorov itkimplementationofaphysicsbasednonrigidregistrationmethodforbraindeformationinimageguidedneurosurgery
AT andreyefedorov itkimplementationofaphysicsbasednonrigidregistrationmethodforbraindeformationinimageguidedneurosurgery
AT andineteenquobahrie itkimplementationofaphysicsbasednonrigidregistrationmethodforbraindeformationinimageguidedneurosurgery
AT oliviereclatz itkimplementationofaphysicsbasednonrigidregistrationmethodforbraindeformationinimageguidedneurosurgery
AT nikospchrisochoides itkimplementationofaphysicsbasednonrigidregistrationmethodforbraindeformationinimageguidedneurosurgery