The Role of Anode Manufacturing Processes in Net Carbon Consumption

Carbon anodes are consumed in electrolysis cells during aluminum production. Carbon consumption in pre-bake anode cells is 400–450 kg C/t Al, considerably higher than the theoretical consumption of 334 kg C/t Al. This excess carbon consumption is partly due to the anode manufacturing processes. Net...

Full description

Bibliographic Details
Main Authors: Khalil Khaji, Mohammed Al Qassemi
Format: Article
Language:English
Published: MDPI AG 2016-05-01
Series:Metals
Subjects:
Online Access:http://www.mdpi.com/2075-4701/6/6/128
Description
Summary:Carbon anodes are consumed in electrolysis cells during aluminum production. Carbon consumption in pre-bake anode cells is 400–450 kg C/t Al, considerably higher than the theoretical consumption of 334 kg C/t Al. This excess carbon consumption is partly due to the anode manufacturing processes. Net carbon consumption over the last three years at Emirates Aluminium (EMAL, also known as Emirates Global Aluminium (EGA) Al Taweelah) was analyzed with respect to anode manufacturing processes/parameters. The analysis indicates a relationship between net carbon consumption and many manufacturing processes, including anode desulfurization during anode baking. Anode desulfurization appears to increase the reaction surface area, thereby helping the Boudouard reaction between carbon and carbon dioxide in the electrolysis zone, as well as reducing the presence of sulfur which could inhibit this reaction. This paper presents correlations noted between anode manufacturing parameters and baked anode properties, and their impact on the net carbon consumption in electrolytic pots. Anode reactivities affect the carbon consumption in the pots during the electrolysis of alumina. Pitch content in anodes, impurities in anodes, and anode desulfurization during baking were studied to find their influence on anode reactivities. The understanding gained through this analysis helped reduce net carbon consumption by adjusting manufacturing processes. For an aluminum smelter producing one million tonnes of aluminum per year, the annual savings could be as much as US $0.45 million for every kg reduction in net carbon consumption.
ISSN:2075-4701