Introducing Compressive Residual Stresses into a Stainless-Steel T-Pipe Joint by an Overlay Weld

Microcracks are always present in the deposited metal of nickel-based alloys and austenitic stainless steels, which affects the safety of the pressure pipes. If compressive stress can be introduced into the cracked position by overlay welding, the time required with ordinary gouging repair welding t...

Full description

Bibliographic Details
Main Authors: Qibao Chu, Xiaofei Kong, Wei Tan
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/11/7/1109
Description
Summary:Microcracks are always present in the deposited metal of nickel-based alloys and austenitic stainless steels, which affects the safety of the pressure pipes. If compressive stress can be introduced into the cracked position by overlay welding, the time required with ordinary gouging repair welding technology will be significantly reduced, which is practical significance for pressure pipes repair welding. In this work, a stainless-steel T-pipe joint was fabricated using manual metal arc welding with an ER316L wire, and an overlay weld was fabricated using tungsten inert gas arc welding with an ERNiCrFe-7A wire. The overlay thickness was about 10 mm. The contour method was employed to measure the residual stress in the T-pipe joint. The results show that compressive residual stress about 50 MPa is formed in the original ER316L weld, which proves that the residual compressive stress can be obtained in the original weld by surfacing 10 mm thick nickel base alloy on the original weld surface.
ISSN:2075-4701