Influence of an L^{p}-perturbation on Hardy-Sobolev inequality with singularity a curve

We consider a bounded domain \(\Omega\) of \(\mathbb{R}^N\), \(N \geq 3\), \(h\) and \(b\) continuous functions on \(\Omega\). Let \(\Gamma\) be a closed curve contained in \(\Omega\). We study existence of positive solutions \(u \in H^1_0(\Omega)\) to the perturbed Hardy-Sobolev equation: \[-\Delt...

Full description

Bibliographic Details
Main Authors: Idowu Esther Ijaodoro, El Hadji Abdoulaye Thiam
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2021-03-01
Series:Opuscula Mathematica
Subjects:
Online Access:https://www.opuscula.agh.edu.pl/vol41/2/art/opuscula_math_4109.pdf
_version_ 1818876344758435840
author Idowu Esther Ijaodoro
El Hadji Abdoulaye Thiam
author_facet Idowu Esther Ijaodoro
El Hadji Abdoulaye Thiam
author_sort Idowu Esther Ijaodoro
collection DOAJ
description We consider a bounded domain \(\Omega\) of \(\mathbb{R}^N\), \(N \geq 3\), \(h\) and \(b\) continuous functions on \(\Omega\). Let \(\Gamma\) be a closed curve contained in \(\Omega\). We study existence of positive solutions \(u \in H^1_0(\Omega)\) to the perturbed Hardy-Sobolev equation: \[-\Delta u+hu+bu^{1+\delta}=\rho^{-\sigma}_{\Gamma} u^{2^*_{\sigma}-1} \quad \textrm{ in } \Omega,\] where \(2^*_{\sigma}:=\frac{2(N-\sigma)}{N-2}\) is the critical Hardy-Sobolev exponent, \(\sigma\in [0,2)\), \(0\lt\delta\lt\frac{4}{N-2}\) and \(\rho_{\Gamma}\) is the distance function to \(\Gamma\). We show that the existence of minimizers does not depend on the local geometry of \(\Gamma\) nor on the potential \(h\). For \(N=3\), the existence of ground-state solution may depends on the trace of the regular part of the Green function of \(-\Delta+h\) and or on \(b\). This is due to the perturbative term of order \(1+\delta\).
first_indexed 2024-12-19T13:40:54Z
format Article
id doaj.art-f8ef745882864fd9ad27b5466308ad8d
institution Directory Open Access Journal
issn 1232-9274
language English
last_indexed 2024-12-19T13:40:54Z
publishDate 2021-03-01
publisher AGH Univeristy of Science and Technology Press
record_format Article
series Opuscula Mathematica
spelling doaj.art-f8ef745882864fd9ad27b5466308ad8d2022-12-21T20:19:01ZengAGH Univeristy of Science and Technology PressOpuscula Mathematica1232-92742021-03-01412187204https://doi.org/10.7494/OpMath.2021.41.2.1874109Influence of an L^{p}-perturbation on Hardy-Sobolev inequality with singularity a curveIdowu Esther Ijaodoro0https://orcid.org/0000-0002-9550-9090El Hadji Abdoulaye Thiam1https://orcid.org/0000-0003-1206-8312African Institute for Mathematical Sciences in Senegal, KM 2, Route de Joal, B.P. 14 18, Mbour, SenegalUniversité de Thies, UFR des Sciences et Techniques, Département de Mathématiques, Thies, SenegalWe consider a bounded domain \(\Omega\) of \(\mathbb{R}^N\), \(N \geq 3\), \(h\) and \(b\) continuous functions on \(\Omega\). Let \(\Gamma\) be a closed curve contained in \(\Omega\). We study existence of positive solutions \(u \in H^1_0(\Omega)\) to the perturbed Hardy-Sobolev equation: \[-\Delta u+hu+bu^{1+\delta}=\rho^{-\sigma}_{\Gamma} u^{2^*_{\sigma}-1} \quad \textrm{ in } \Omega,\] where \(2^*_{\sigma}:=\frac{2(N-\sigma)}{N-2}\) is the critical Hardy-Sobolev exponent, \(\sigma\in [0,2)\), \(0\lt\delta\lt\frac{4}{N-2}\) and \(\rho_{\Gamma}\) is the distance function to \(\Gamma\). We show that the existence of minimizers does not depend on the local geometry of \(\Gamma\) nor on the potential \(h\). For \(N=3\), the existence of ground-state solution may depends on the trace of the regular part of the Green function of \(-\Delta+h\) and or on \(b\). This is due to the perturbative term of order \(1+\delta\).https://www.opuscula.agh.edu.pl/vol41/2/art/opuscula_math_4109.pdfhardy-sobolev inequalitypositive minimizersparametrized curvemassgreen function
spellingShingle Idowu Esther Ijaodoro
El Hadji Abdoulaye Thiam
Influence of an L^{p}-perturbation on Hardy-Sobolev inequality with singularity a curve
Opuscula Mathematica
hardy-sobolev inequality
positive minimizers
parametrized curve
mass
green function
title Influence of an L^{p}-perturbation on Hardy-Sobolev inequality with singularity a curve
title_full Influence of an L^{p}-perturbation on Hardy-Sobolev inequality with singularity a curve
title_fullStr Influence of an L^{p}-perturbation on Hardy-Sobolev inequality with singularity a curve
title_full_unstemmed Influence of an L^{p}-perturbation on Hardy-Sobolev inequality with singularity a curve
title_short Influence of an L^{p}-perturbation on Hardy-Sobolev inequality with singularity a curve
title_sort influence of an l p perturbation on hardy sobolev inequality with singularity a curve
topic hardy-sobolev inequality
positive minimizers
parametrized curve
mass
green function
url https://www.opuscula.agh.edu.pl/vol41/2/art/opuscula_math_4109.pdf
work_keys_str_mv AT idowuestherijaodoro influenceofanlpperturbationonhardysobolevinequalitywithsingularityacurve
AT elhadjiabdoulayethiam influenceofanlpperturbationonhardysobolevinequalitywithsingularityacurve