Existence of positive solutions for boundary value problems of second-order systems with nonlinear boundary conditions(带非线性边界条件的二阶奇异微分系统正解的存在性)
研究了带非线性边界条件的二阶奇异微分系统边值问题正解的存在性,其中u = (u1,u2,⋯,un)T,G (t)= diag [ g1 (t),g2 (t),⋯,gn (t) ],且gi (t)(i = 1,2,⋯,n) 在t = 0 处允许有奇性 F (u)= (f1 (u),f2 (u),⋯,fn (u))T,C = diag(c1,c2,⋯,cn),Λ = diag(λ1,λ2,⋯,λn),λi(i = 1,2,⋯,n)为正参数。在非线性项F分别满足超线性、次线性和渐近线性的增长条件下,运用锥拉伸与压缩不动点定理获得了该问题正解的存在性结论。...
Main Authors: | , |
---|---|
Format: | Article |
Language: | zho |
Published: |
Zhejiang University Press
2019-11-01
|
Series: | Zhejiang Daxue xuebao. Lixue ban |
Subjects: | |
Online Access: | https://doi.org/10.3785/j.issn.1008-9497.2019.06.008 |
_version_ | 1827302900915765248 |
---|---|
author | MAMantang(马满堂) JIAKaijun(贾凯军) |
author_facet | MAMantang(马满堂) JIAKaijun(贾凯军) |
author_sort | MAMantang(马满堂) |
collection | DOAJ |
description | 研究了带非线性边界条件的二阶奇异微分系统边值问题正解的存在性,其中u = (u1,u2,⋯,un)T,G (t)= diag [ g1 (t),g2 (t),⋯,gn (t) ],且gi (t)(i = 1,2,⋯,n) 在t = 0 处允许有奇性 F (u)= (f1 (u),f2 (u),⋯,fn (u))T,C = diag(c1,c2,⋯,cn),Λ = diag(λ1,λ2,⋯,λn),λi(i = 1,2,⋯,n)为正参数。在非线性项F分别满足超线性、次线性和渐近线性的增长条件下,运用锥拉伸与压缩不动点定理获得了该问题正解的存在性结论。 |
first_indexed | 2024-04-24T16:52:57Z |
format | Article |
id | doaj.art-f8f7260924e1412db05988ec2ce69bd4 |
institution | Directory Open Access Journal |
issn | 1008-9497 |
language | zho |
last_indexed | 2024-04-24T16:52:57Z |
publishDate | 2019-11-01 |
publisher | Zhejiang University Press |
record_format | Article |
series | Zhejiang Daxue xuebao. Lixue ban |
spelling | doaj.art-f8f7260924e1412db05988ec2ce69bd42024-03-29T01:58:39ZzhoZhejiang University PressZhejiang Daxue xuebao. Lixue ban1008-94972019-11-0146668669010.3785/j.issn.1008-9497.2019.06.008Existence of positive solutions for boundary value problems of second-order systems with nonlinear boundary conditions(带非线性边界条件的二阶奇异微分系统正解的存在性)MAMantang(马满堂)0https://orcid.org/0000-0001-6643-0503JIAKaijun(贾凯军)https://orcid.org/0000-0001-6712-4276College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China(西北师范大学 数学与统计学院,甘肃 兰州 730070)研究了带非线性边界条件的二阶奇异微分系统边值问题正解的存在性,其中u = (u1,u2,⋯,un)T,G (t)= diag [ g1 (t),g2 (t),⋯,gn (t) ],且gi (t)(i = 1,2,⋯,n) 在t = 0 处允许有奇性 F (u)= (f1 (u),f2 (u),⋯,fn (u))T,C = diag(c1,c2,⋯,cn),Λ = diag(λ1,λ2,⋯,λn),λi(i = 1,2,⋯,n)为正参数。在非线性项F分别满足超线性、次线性和渐近线性的增长条件下,运用锥拉伸与压缩不动点定理获得了该问题正解的存在性结论。https://doi.org/10.3785/j.issn.1008-9497.2019.06.008非线性边界条件系统正解存在性锥 |
spellingShingle | MAMantang(马满堂) JIAKaijun(贾凯军) Existence of positive solutions for boundary value problems of second-order systems with nonlinear boundary conditions(带非线性边界条件的二阶奇异微分系统正解的存在性) Zhejiang Daxue xuebao. Lixue ban 非线性边界条件 系统 正解 存在性 锥 |
title | Existence of positive solutions for boundary value problems of second-order systems with nonlinear boundary conditions(带非线性边界条件的二阶奇异微分系统正解的存在性) |
title_full | Existence of positive solutions for boundary value problems of second-order systems with nonlinear boundary conditions(带非线性边界条件的二阶奇异微分系统正解的存在性) |
title_fullStr | Existence of positive solutions for boundary value problems of second-order systems with nonlinear boundary conditions(带非线性边界条件的二阶奇异微分系统正解的存在性) |
title_full_unstemmed | Existence of positive solutions for boundary value problems of second-order systems with nonlinear boundary conditions(带非线性边界条件的二阶奇异微分系统正解的存在性) |
title_short | Existence of positive solutions for boundary value problems of second-order systems with nonlinear boundary conditions(带非线性边界条件的二阶奇异微分系统正解的存在性) |
title_sort | existence of positive solutions for boundary value problems of second order systems with nonlinear boundary conditions 带非线性边界条件的二阶奇异微分系统正解的存在性 |
topic | 非线性边界条件 系统 正解 存在性 锥 |
url | https://doi.org/10.3785/j.issn.1008-9497.2019.06.008 |
work_keys_str_mv | AT mamantangmǎmǎntáng existenceofpositivesolutionsforboundaryvalueproblemsofsecondordersystemswithnonlinearboundaryconditionsdàifēixiànxìngbiānjiètiáojiàndeèrjiēqíyìwēifēnxìtǒngzhèngjiědecúnzàixìng AT jiakaijunjiǎkǎijūn existenceofpositivesolutionsforboundaryvalueproblemsofsecondordersystemswithnonlinearboundaryconditionsdàifēixiànxìngbiānjiètiáojiàndeèrjiēqíyìwēifēnxìtǒngzhèngjiědecúnzàixìng |