A comparison between various two-variable regression methods in order to estimate soil components using satellite data Case study: Abarkooh playa, Yazd

The study of relationship between various soil parameters and satellite data is an effective step in the identification and separation of desert facies.  To do so, this study  aim to study two-variable regression methods based on different relationships between the various soil components data and A...

Full description

Bibliographic Details
Main Authors: Dr. Reza Ghezavi, Zohre Ebrahimi Khusfi, Dr. Mohammad Reza Ekhtesasi, Dr. Seyed Zeynolabedin Hosseini, Mohsen Ebrahimi Khusfi, Dr. Mohammad Hasanzadeh nafooti
Format: Article
Language:fas
Published: University of Sistan and Baluchistan 2014-01-01
Series:جغرافیا و آمایش شهری منطقه‌ای
Subjects:
Online Access:https://gaij.usb.ac.ir/article_1392_737aebeb5c07aafc33b0d6e567321b2c.pdf
_version_ 1797798442696704000
author Dr. Reza Ghezavi
Zohre Ebrahimi Khusfi
Dr. Mohammad Reza Ekhtesasi
Dr. Seyed Zeynolabedin Hosseini
Mohsen Ebrahimi Khusfi
Dr. Mohammad Hasanzadeh nafooti
author_facet Dr. Reza Ghezavi
Zohre Ebrahimi Khusfi
Dr. Mohammad Reza Ekhtesasi
Dr. Seyed Zeynolabedin Hosseini
Mohsen Ebrahimi Khusfi
Dr. Mohammad Hasanzadeh nafooti
author_sort Dr. Reza Ghezavi
collection DOAJ
description The study of relationship between various soil parameters and satellite data is an effective step in the identification and separation of desert facies.  To do so, this study  aim to study two-variable regression methods based on different relationships between the various soil components data and ASTER satellite data in order to detect Abarkoo playa facies. To achieve this purpose, at first, 30 topsoil samples were collected from the study area and analyzed in laboratory. Various pedological components (Anion, Cations, Soil moisture, Texture and PH) were also measured. After performing the necessary processing on the satellite images, the value of pixels in each band were extracted by overlaying ground points over satellite image. In the next step, the correlation between satellite data and laboratory values were evaluated by using various two-variable regression methods. The accuracy of the models was assessed using Relative Error, Root Mean Square Error, and Correlation Coefficient of Efficiency. Results indicated that the minimum correlation coefficient is 45%, the maximum relative error of estimation and confirmed are respectively 247.4 and 2489.7 percent, root mean square error is low and the minimum Coefficient of Efficiency is 19 percent.  Furthermore, the results of this study showed that there is no significant relationship between PH and soil moisture and satellite data in the study area.
first_indexed 2024-03-13T04:03:44Z
format Article
id doaj.art-f8f8997a99784878b5186944360dc517
institution Directory Open Access Journal
issn 2345-2277
2783-5278
language fas
last_indexed 2024-03-13T04:03:44Z
publishDate 2014-01-01
publisher University of Sistan and Baluchistan
record_format Article
series جغرافیا و آمایش شهری منطقه‌ای
spelling doaj.art-f8f8997a99784878b5186944360dc5172023-06-21T10:47:28ZfasUniversity of Sistan and Baluchistanجغرافیا و آمایش شهری منطقه‌ای2345-22772783-52782014-01-013911112110.22111/gaij.2014.13921392A comparison between various two-variable regression methods in order to estimate soil components using satellite data Case study: Abarkooh playa, YazdDr. Reza Ghezavi0Zohre Ebrahimi Khusfi1Dr. Mohammad Reza Ekhtesasi2Dr. Seyed Zeynolabedin Hosseini3Mohsen Ebrahimi Khusfi4Dr. Mohammad Hasanzadeh nafooti5استادیار و عضو هیئت علمی دانشکده منابع طبیعی و علوم زمین، دانشگاه کاشاندانشجوی دکتری بیابان زدایی، دانشکده منابع طبیعی و علوم زمین، دانشگاه کاشاندانشیار و عضو هیئت علمی دانشکده منابع طبیعی دانشگاه یزداستادیار و عضو هیئت علمی دانشکده منابع طبیعی دانشگاه یزددانشجوی دکتری سنجش از دور و سامانه اطلاعات جغرافیایی، دانشکده جغرافیا، دانشگاه تهراناستادیار دانشکده منابع طبیعی، دانشگاه آزاد اسلامی، واحد میبدThe study of relationship between various soil parameters and satellite data is an effective step in the identification and separation of desert facies.  To do so, this study  aim to study two-variable regression methods based on different relationships between the various soil components data and ASTER satellite data in order to detect Abarkoo playa facies. To achieve this purpose, at first, 30 topsoil samples were collected from the study area and analyzed in laboratory. Various pedological components (Anion, Cations, Soil moisture, Texture and PH) were also measured. After performing the necessary processing on the satellite images, the value of pixels in each band were extracted by overlaying ground points over satellite image. In the next step, the correlation between satellite data and laboratory values were evaluated by using various two-variable regression methods. The accuracy of the models was assessed using Relative Error, Root Mean Square Error, and Correlation Coefficient of Efficiency. Results indicated that the minimum correlation coefficient is 45%, the maximum relative error of estimation and confirmed are respectively 247.4 and 2489.7 percent, root mean square error is low and the minimum Coefficient of Efficiency is 19 percent.  Furthermore, the results of this study showed that there is no significant relationship between PH and soil moisture and satellite data in the study area.https://gaij.usb.ac.ir/article_1392_737aebeb5c07aafc33b0d6e567321b2c.pdftwo-variable regressionkavir faciessatellite datacomponents of soilasterabarkoo playa
spellingShingle Dr. Reza Ghezavi
Zohre Ebrahimi Khusfi
Dr. Mohammad Reza Ekhtesasi
Dr. Seyed Zeynolabedin Hosseini
Mohsen Ebrahimi Khusfi
Dr. Mohammad Hasanzadeh nafooti
A comparison between various two-variable regression methods in order to estimate soil components using satellite data Case study: Abarkooh playa, Yazd
جغرافیا و آمایش شهری منطقه‌ای
two-variable regression
kavir facies
satellite data
components of soil
aster
abarkoo playa
title A comparison between various two-variable regression methods in order to estimate soil components using satellite data Case study: Abarkooh playa, Yazd
title_full A comparison between various two-variable regression methods in order to estimate soil components using satellite data Case study: Abarkooh playa, Yazd
title_fullStr A comparison between various two-variable regression methods in order to estimate soil components using satellite data Case study: Abarkooh playa, Yazd
title_full_unstemmed A comparison between various two-variable regression methods in order to estimate soil components using satellite data Case study: Abarkooh playa, Yazd
title_short A comparison between various two-variable regression methods in order to estimate soil components using satellite data Case study: Abarkooh playa, Yazd
title_sort comparison between various two variable regression methods in order to estimate soil components using satellite data case study abarkooh playa yazd
topic two-variable regression
kavir facies
satellite data
components of soil
aster
abarkoo playa
url https://gaij.usb.ac.ir/article_1392_737aebeb5c07aafc33b0d6e567321b2c.pdf
work_keys_str_mv AT drrezaghezavi acomparisonbetweenvarioustwovariableregressionmethodsinordertoestimatesoilcomponentsusingsatellitedatacasestudyabarkoohplayayazd
AT zohreebrahimikhusfi acomparisonbetweenvarioustwovariableregressionmethodsinordertoestimatesoilcomponentsusingsatellitedatacasestudyabarkoohplayayazd
AT drmohammadrezaekhtesasi acomparisonbetweenvarioustwovariableregressionmethodsinordertoestimatesoilcomponentsusingsatellitedatacasestudyabarkoohplayayazd
AT drseyedzeynolabedinhosseini acomparisonbetweenvarioustwovariableregressionmethodsinordertoestimatesoilcomponentsusingsatellitedatacasestudyabarkoohplayayazd
AT mohsenebrahimikhusfi acomparisonbetweenvarioustwovariableregressionmethodsinordertoestimatesoilcomponentsusingsatellitedatacasestudyabarkoohplayayazd
AT drmohammadhasanzadehnafooti acomparisonbetweenvarioustwovariableregressionmethodsinordertoestimatesoilcomponentsusingsatellitedatacasestudyabarkoohplayayazd
AT drrezaghezavi comparisonbetweenvarioustwovariableregressionmethodsinordertoestimatesoilcomponentsusingsatellitedatacasestudyabarkoohplayayazd
AT zohreebrahimikhusfi comparisonbetweenvarioustwovariableregressionmethodsinordertoestimatesoilcomponentsusingsatellitedatacasestudyabarkoohplayayazd
AT drmohammadrezaekhtesasi comparisonbetweenvarioustwovariableregressionmethodsinordertoestimatesoilcomponentsusingsatellitedatacasestudyabarkoohplayayazd
AT drseyedzeynolabedinhosseini comparisonbetweenvarioustwovariableregressionmethodsinordertoestimatesoilcomponentsusingsatellitedatacasestudyabarkoohplayayazd
AT mohsenebrahimikhusfi comparisonbetweenvarioustwovariableregressionmethodsinordertoestimatesoilcomponentsusingsatellitedatacasestudyabarkoohplayayazd
AT drmohammadhasanzadehnafooti comparisonbetweenvarioustwovariableregressionmethodsinordertoestimatesoilcomponentsusingsatellitedatacasestudyabarkoohplayayazd