SAR2SAR: A Semi-Supervised Despeckling Algorithm for SAR Images

Speckle reduction is a key step in many remote sensing applications. By strongly affecting synthetic aperture radar (SAR) images, it makes them difficult to analyze. Due to the difficulty to model the spatial correlation of speckle, a deep learning algorithm with semi-supervision is proposed in this...

Full description

Bibliographic Details
Main Authors: Emanuele Dalsasso, Loic Denis, Florence Tupin
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9399231/
Description
Summary:Speckle reduction is a key step in many remote sensing applications. By strongly affecting synthetic aperture radar (SAR) images, it makes them difficult to analyze. Due to the difficulty to model the spatial correlation of speckle, a deep learning algorithm with semi-supervision is proposed in this article: SAR2SAR. Multitemporal time series are leveraged and the neural network learns to restore SAR images by only looking at noisy acquisitions. To this purpose, the recently proposed noise2noise framework <xref ref-type="bibr" rid="ref1">[1]</xref> has been employed. The strategy to adapt it to SAR despeckling is presented, based on a compensation of temporal changes and a loss function adapted to the statistics of speckle. A study with synthetic speckle noise is presented to compare the performances of the proposed method with other state-of-the-art filters. Then, results on real images are discussed, to show the potential of the proposed algorithm. The code is made available to allow testing and reproducible research in this field.
ISSN:2151-1535