Summary: | The melting behavior of glaciers on and around the Tibetan Plateau is strongly influenced by their albedo. In this paper, we report continuous observations made on the Qiangtang (QT) No. 1 Glacier, located in the central Tibetan Plateau, during its 2013–2015 melting seasons. Surface snow on the QT No. 1 Glacier mainly had a dust content less than 600 ppm and a black carbon (BC) content less than 10 ppb. A strong negative correlation was observed between albedo and dust content up to a threshold concentration of 1000 ppm, although albedo remained constant when dust concentrations increased above this value. The radii of snow particles showed a log-normal distribution that had a mean value of ~500 μm, but maximum and minimum values of 2539 μm and 40 μm, respectively. Snow density showed a normal distribution with a total range of 193–555 kg/m<sup>3</sup>, although most snow had a density of 400 kg/m<sup>3</sup>. Snow, ice, and aerosol radiative (SNICAR) simulations showed that dust and BC in the surface snow of the QT No. 1 Glacier reduced the snow and ice albedo by 5.9% and 0.06%, respectively, during the ablation season in 2015; however, the simulated particle impact was greater than the albedo reduction measured from field data. We interpret that dust has played a significantly more important role in melting of the QT No. 1 Glacier than BC over the study period, which is mainly due to the scarcity of human activities in the region and the low concentration of BC being produced.
|