Neural Network Approximation for Time Splitting Random Functions

In this article we present the multivariate approximation of time splitting random functions defined on a box or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="double-...

Ful tanımlama

Detaylı Bibliyografya
Asıl Yazarlar: George A. Anastassiou, Dimitra Kouloumpou
Materyal Türü: Makale
Dil:English
Baskı/Yayın Bilgisi: MDPI AG 2023-05-01
Seri Bilgileri:Mathematics
Konular:
Online Erişim:https://www.mdpi.com/2227-7390/11/9/2183
_version_ 1827742886522781696
author George A. Anastassiou
Dimitra Kouloumpou
author_facet George A. Anastassiou
Dimitra Kouloumpou
author_sort George A. Anastassiou
collection DOAJ
description In this article we present the multivariate approximation of time splitting random functions defined on a box or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="double-struck">R</mi><mi>N</mi></msup><mo>,</mo><mi>N</mi><mo>∈</mo><mi mathvariant="double-struck">N</mi><mo>,</mo></mrow></semantics></math></inline-formula> by neural network operators of quasi-interpolation type. We achieve these approximations by obtaining quantitative-type Jackson inequalities engaging the multivariate modulus of continuity of a related random function or its partial high-order derivatives. We use density functions to define our operators. These derive from the logistic and hyperbolic tangent sigmoid activation functions. Our convergences are both point-wise and uniform. The engaged feed-forward neural networks possess one hidden layer. We finish the article with a great variety of applications.
first_indexed 2024-03-11T04:12:40Z
format Article
id doaj.art-f90c97c2a19a4b918c68fa39e2553d52
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T04:12:40Z
publishDate 2023-05-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-f90c97c2a19a4b918c68fa39e2553d522023-11-17T23:21:05ZengMDPI AGMathematics2227-73902023-05-01119218310.3390/math11092183Neural Network Approximation for Time Splitting Random FunctionsGeorge A. Anastassiou0Dimitra Kouloumpou1Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USASection of Mathematics, Hellenic Naval Academy, 18539 Piraeus, GreeceIn this article we present the multivariate approximation of time splitting random functions defined on a box or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="double-struck">R</mi><mi>N</mi></msup><mo>,</mo><mi>N</mi><mo>∈</mo><mi mathvariant="double-struck">N</mi><mo>,</mo></mrow></semantics></math></inline-formula> by neural network operators of quasi-interpolation type. We achieve these approximations by obtaining quantitative-type Jackson inequalities engaging the multivariate modulus of continuity of a related random function or its partial high-order derivatives. We use density functions to define our operators. These derive from the logistic and hyperbolic tangent sigmoid activation functions. Our convergences are both point-wise and uniform. The engaged feed-forward neural networks possess one hidden layer. We finish the article with a great variety of applications.https://www.mdpi.com/2227-7390/11/9/2183logistic and hyperbolic sigmoid functionstime splitting random functionneural network approximationquasi-interpolation operatormultivariate modulus of continuitystochastic inequalities
spellingShingle George A. Anastassiou
Dimitra Kouloumpou
Neural Network Approximation for Time Splitting Random Functions
Mathematics
logistic and hyperbolic sigmoid functions
time splitting random function
neural network approximation
quasi-interpolation operator
multivariate modulus of continuity
stochastic inequalities
title Neural Network Approximation for Time Splitting Random Functions
title_full Neural Network Approximation for Time Splitting Random Functions
title_fullStr Neural Network Approximation for Time Splitting Random Functions
title_full_unstemmed Neural Network Approximation for Time Splitting Random Functions
title_short Neural Network Approximation for Time Splitting Random Functions
title_sort neural network approximation for time splitting random functions
topic logistic and hyperbolic sigmoid functions
time splitting random function
neural network approximation
quasi-interpolation operator
multivariate modulus of continuity
stochastic inequalities
url https://www.mdpi.com/2227-7390/11/9/2183
work_keys_str_mv AT georgeaanastassiou neuralnetworkapproximationfortimesplittingrandomfunctions
AT dimitrakouloumpou neuralnetworkapproximationfortimesplittingrandomfunctions