Inferring Preferences for Multi-Criteria Ordinal Classification Methods Using Evolutionary Algorithms

Multicriteria sorting involves assigning the objects of decisions (actions) into <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula> priori known ordered classes considering the preferences of a decision maker (DM). Two new multicriteria sor...

Full description

Bibliographic Details
Main Authors: Eduardo Fernandez, Jorge Navarro, Efrain Solares, Carlos A. Coello Coello, Raymundo Diaz, Abril Flores
Format: Article
Language:English
Published: IEEE 2023-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10005265/
_version_ 1797807282748129280
author Eduardo Fernandez
Jorge Navarro
Efrain Solares
Carlos A. Coello Coello
Raymundo Diaz
Abril Flores
author_facet Eduardo Fernandez
Jorge Navarro
Efrain Solares
Carlos A. Coello Coello
Raymundo Diaz
Abril Flores
author_sort Eduardo Fernandez
collection DOAJ
description Multicriteria sorting involves assigning the objects of decisions (actions) into <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula> priori known ordered classes considering the preferences of a decision maker (DM). Two new multicriteria sorting methods were recently proposed by the authors. These methods are based on a novel approach called interval-based outranking which provides the methods with attractive practical and theoretical characteristics. However, as is well known, defining parameter values for methods based on the outranking approach is often very difficult. This difficulty arises not only from the large number of parameters and the DM&#x2019;s lack of familiarity with them, but also from imperfectly known (even missing) information. Here, we address: i) how to elicit the parameter values of the two new methods, and ii) how to incorporate imperfect knowledge during the elicitation. We follow the preference disaggregation paradigm and use evolutionary algorithms to address it. Our proposal performs very well in a wide range of computational experiments. Interesting findings are: i) the method restores the assignment examples with high effectiveness using only three profiles in each limiting boundary or representative actions per class; and ii) the ability to appropriately assign unknown actions can be greatly improved by increasing the number of limiting profiles.
first_indexed 2024-03-13T06:20:14Z
format Article
id doaj.art-f913e25aa9f946118cb1c0b8abf0f857
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-03-13T06:20:14Z
publishDate 2023-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-f913e25aa9f946118cb1c0b8abf0f8572023-06-09T23:00:22ZengIEEEIEEE Access2169-35362023-01-01113044306110.1109/ACCESS.2023.323424010005265Inferring Preferences for Multi-Criteria Ordinal Classification Methods Using Evolutionary AlgorithmsEduardo Fernandez0Jorge Navarro1Efrain Solares2https://orcid.org/0000-0003-1310-8638Carlos A. Coello Coello3https://orcid.org/0000-0002-8435-680XRaymundo Diaz4Abril Flores5https://orcid.org/0000-0002-1197-8376Facultad de Contadur&#x00ED;a y Administraci&#x00F3;n, Universidad Aut&#x00F3;noma de Coahuila, Torreon, MexicoFacultad de Inform&#x00E1;tica, Universidad Aut&#x00F3;noma de Sinaloa, Culiac&#x00E1;n, MexicoFacultad de Contadur&#x00ED;a y Administraci&#x00F3;n, Universidad Aut&#x00F3;noma de Coahuila, Torreon, MexicoCentro de Investigaci&#x00F3;n y de Estudios Avanzados del IPN, Departmento de Computaci&#x00F3;n, Ciudad de M&#x00E9;xico, MexicoTecnol&#x00F3;gico de Monterrey, Monterrey, MexicoFacultad de Contadur&#x00ED;a y Administraci&#x00F3;n, Universidad Aut&#x00F3;noma de Coahuila, Torreon, MexicoMulticriteria sorting involves assigning the objects of decisions (actions) into <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula> priori known ordered classes considering the preferences of a decision maker (DM). Two new multicriteria sorting methods were recently proposed by the authors. These methods are based on a novel approach called interval-based outranking which provides the methods with attractive practical and theoretical characteristics. However, as is well known, defining parameter values for methods based on the outranking approach is often very difficult. This difficulty arises not only from the large number of parameters and the DM&#x2019;s lack of familiarity with them, but also from imperfectly known (even missing) information. Here, we address: i) how to elicit the parameter values of the two new methods, and ii) how to incorporate imperfect knowledge during the elicitation. We follow the preference disaggregation paradigm and use evolutionary algorithms to address it. Our proposal performs very well in a wide range of computational experiments. Interesting findings are: i) the method restores the assignment examples with high effectiveness using only three profiles in each limiting boundary or representative actions per class; and ii) the ability to appropriately assign unknown actions can be greatly improved by increasing the number of limiting profiles.https://ieeexplore.ieee.org/document/10005265/Evolutionary algorithmsimperfect informationmultiple criteria analysismultiple criteria ordinal classificationoutranking methods
spellingShingle Eduardo Fernandez
Jorge Navarro
Efrain Solares
Carlos A. Coello Coello
Raymundo Diaz
Abril Flores
Inferring Preferences for Multi-Criteria Ordinal Classification Methods Using Evolutionary Algorithms
IEEE Access
Evolutionary algorithms
imperfect information
multiple criteria analysis
multiple criteria ordinal classification
outranking methods
title Inferring Preferences for Multi-Criteria Ordinal Classification Methods Using Evolutionary Algorithms
title_full Inferring Preferences for Multi-Criteria Ordinal Classification Methods Using Evolutionary Algorithms
title_fullStr Inferring Preferences for Multi-Criteria Ordinal Classification Methods Using Evolutionary Algorithms
title_full_unstemmed Inferring Preferences for Multi-Criteria Ordinal Classification Methods Using Evolutionary Algorithms
title_short Inferring Preferences for Multi-Criteria Ordinal Classification Methods Using Evolutionary Algorithms
title_sort inferring preferences for multi criteria ordinal classification methods using evolutionary algorithms
topic Evolutionary algorithms
imperfect information
multiple criteria analysis
multiple criteria ordinal classification
outranking methods
url https://ieeexplore.ieee.org/document/10005265/
work_keys_str_mv AT eduardofernandez inferringpreferencesformulticriteriaordinalclassificationmethodsusingevolutionaryalgorithms
AT jorgenavarro inferringpreferencesformulticriteriaordinalclassificationmethodsusingevolutionaryalgorithms
AT efrainsolares inferringpreferencesformulticriteriaordinalclassificationmethodsusingevolutionaryalgorithms
AT carlosacoellocoello inferringpreferencesformulticriteriaordinalclassificationmethodsusingevolutionaryalgorithms
AT raymundodiaz inferringpreferencesformulticriteriaordinalclassificationmethodsusingevolutionaryalgorithms
AT abrilflores inferringpreferencesformulticriteriaordinalclassificationmethodsusingevolutionaryalgorithms