Inverse Identification of Single-Crystal Plasticity Parameters of HCP Zinc from Nanoindentation Curves and Residual Topographies

This paper investigates the orientation-dependent characteristics of pure zinc under localized loading using nanoindentation experiments and crystal plasticity finite element (CPFEM) simulations. Nanoindentation experiments on different grain orientations exhibited distinct load–depth responses. Ato...

Full description

Bibliographic Details
Main Authors: Pham T. N. Nguyen, Fazilay Abbès, Jean-Sébastien Lecomte, Christophe Schuman, Boussad Abbès
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/12/3/300
_version_ 1797485931016486912
author Pham T. N. Nguyen
Fazilay Abbès
Jean-Sébastien Lecomte
Christophe Schuman
Boussad Abbès
author_facet Pham T. N. Nguyen
Fazilay Abbès
Jean-Sébastien Lecomte
Christophe Schuman
Boussad Abbès
author_sort Pham T. N. Nguyen
collection DOAJ
description This paper investigates the orientation-dependent characteristics of pure zinc under localized loading using nanoindentation experiments and crystal plasticity finite element (CPFEM) simulations. Nanoindentation experiments on different grain orientations exhibited distinct load–depth responses. Atomic force microscopy revealed two-fold unsymmetrical material pile-up patterns. Obtaining crystal plasticity model parameters usually requires time-consuming micromechanical tests. Inverse analysis using experimental and simulated loading–unloading nanoindentation curves of individual grains is commonly used, however the solution to the inverse identification problem is not necessarily unique. In this study, an approach is presented allowing the identification of CPFEM constitutive parameters from nanoindentation curves and residual topographies. The proposed approach combines the response surface methodology together with a genetic algorithm to determine an optimal set of parameters. The CPFEM simulations corroborate with measured nanoindentation curves and residual profiles and reveal the evolution of deformation activity underneath the indenter.
first_indexed 2024-03-09T23:25:55Z
format Article
id doaj.art-f921d349722a4380b77b15aef2357423
institution Directory Open Access Journal
issn 2079-4991
language English
last_indexed 2024-03-09T23:25:55Z
publishDate 2022-01-01
publisher MDPI AG
record_format Article
series Nanomaterials
spelling doaj.art-f921d349722a4380b77b15aef23574232023-11-23T17:18:28ZengMDPI AGNanomaterials2079-49912022-01-0112330010.3390/nano12030300Inverse Identification of Single-Crystal Plasticity Parameters of HCP Zinc from Nanoindentation Curves and Residual TopographiesPham T. N. Nguyen0Fazilay Abbès1Jean-Sébastien Lecomte2Christophe Schuman3Boussad Abbès4The University of Danang, University of Science and Technology, Da Nang 550000, VietnamMATériaux et Ingénierie Mécanique (MATIM), Université de Reims Champagne Ardenne, 51100 Reims, FranceLaboratoire d’Étude des Microstructures et de Mécanique des Matériaux (LEM3), CNRS UMR 7239, Université de Lorraine, 57000 Metz, FranceLaboratoire d’Étude des Microstructures et de Mécanique des Matériaux (LEM3), CNRS UMR 7239, Université de Lorraine, 57000 Metz, FranceMATériaux et Ingénierie Mécanique (MATIM), Université de Reims Champagne Ardenne, 51100 Reims, FranceThis paper investigates the orientation-dependent characteristics of pure zinc under localized loading using nanoindentation experiments and crystal plasticity finite element (CPFEM) simulations. Nanoindentation experiments on different grain orientations exhibited distinct load–depth responses. Atomic force microscopy revealed two-fold unsymmetrical material pile-up patterns. Obtaining crystal plasticity model parameters usually requires time-consuming micromechanical tests. Inverse analysis using experimental and simulated loading–unloading nanoindentation curves of individual grains is commonly used, however the solution to the inverse identification problem is not necessarily unique. In this study, an approach is presented allowing the identification of CPFEM constitutive parameters from nanoindentation curves and residual topographies. The proposed approach combines the response surface methodology together with a genetic algorithm to determine an optimal set of parameters. The CPFEM simulations corroborate with measured nanoindentation curves and residual profiles and reveal the evolution of deformation activity underneath the indenter.https://www.mdpi.com/2079-4991/12/3/300crystal plasticityCPFEMnanoindentationparameter identificationzinc
spellingShingle Pham T. N. Nguyen
Fazilay Abbès
Jean-Sébastien Lecomte
Christophe Schuman
Boussad Abbès
Inverse Identification of Single-Crystal Plasticity Parameters of HCP Zinc from Nanoindentation Curves and Residual Topographies
Nanomaterials
crystal plasticity
CPFEM
nanoindentation
parameter identification
zinc
title Inverse Identification of Single-Crystal Plasticity Parameters of HCP Zinc from Nanoindentation Curves and Residual Topographies
title_full Inverse Identification of Single-Crystal Plasticity Parameters of HCP Zinc from Nanoindentation Curves and Residual Topographies
title_fullStr Inverse Identification of Single-Crystal Plasticity Parameters of HCP Zinc from Nanoindentation Curves and Residual Topographies
title_full_unstemmed Inverse Identification of Single-Crystal Plasticity Parameters of HCP Zinc from Nanoindentation Curves and Residual Topographies
title_short Inverse Identification of Single-Crystal Plasticity Parameters of HCP Zinc from Nanoindentation Curves and Residual Topographies
title_sort inverse identification of single crystal plasticity parameters of hcp zinc from nanoindentation curves and residual topographies
topic crystal plasticity
CPFEM
nanoindentation
parameter identification
zinc
url https://www.mdpi.com/2079-4991/12/3/300
work_keys_str_mv AT phamtnnguyen inverseidentificationofsinglecrystalplasticityparametersofhcpzincfromnanoindentationcurvesandresidualtopographies
AT fazilayabbes inverseidentificationofsinglecrystalplasticityparametersofhcpzincfromnanoindentationcurvesandresidualtopographies
AT jeansebastienlecomte inverseidentificationofsinglecrystalplasticityparametersofhcpzincfromnanoindentationcurvesandresidualtopographies
AT christopheschuman inverseidentificationofsinglecrystalplasticityparametersofhcpzincfromnanoindentationcurvesandresidualtopographies
AT boussadabbes inverseidentificationofsinglecrystalplasticityparametersofhcpzincfromnanoindentationcurvesandresidualtopographies