Smarter Evolution: Enhancing Evolutionary Black Box Fuzzing with Adaptive Models

Smart production ecosystems are a valuable target for attackers. In particular, due to the high level of connectivity introduced by Industry 4.0, attackers can potentially attack individual components of production systems from the outside. One approach to strengthening the security of industrial co...

Full description

Bibliographic Details
Main Authors: Anne Borcherding, Martin Morawetz, Steffen Pfrang
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/23/18/7864
Description
Summary:Smart production ecosystems are a valuable target for attackers. In particular, due to the high level of connectivity introduced by Industry 4.0, attackers can potentially attack individual components of production systems from the outside. One approach to strengthening the security of industrial control systems is to perform black box security tests such as network fuzzing. These are applicable, even if no information on the internals of the control system is available. However, most security testing strategies assume a gray box setting, in which some information on the internals are available. We propose a new approach to bridge the gap between these gray box strategies and the real-world black box setting in the domain of industrial control systems. This approach involves training an adaptive machine learning model that approximates the information that is missing in a black box setting. We propose three different approaches for the model, combine them with an evolutionary testing approach, and perform an evaluation using a System under Test with known vulnerabilities. Our evaluation shows that the model is indeed able to learn valuable information about a previously unknown system, and that more vulnerabilities can be uncovered with our approach. The model-based approach using a Decision Tree was able to find a significantly higher number of vulnerabilities than the two baseline fuzzers.
ISSN:1424-8220