An Industrial Scale Synthesis of Adipicdihydrazide (ADH)/Polyacrylate Hybrid with Excellent Formaldehyde Degradation Performance

A simple and versatile route for industrial scale synthesis of adipicdihydrazide (ADH)/polymer hybrids with excellent performance of formaldehyde degradation is proposed in this paper. The ADH compound is uniformly dispersed in poly(methyl methacrylate-butyl acrylate-methacrylic acid) (P(MMA-BA-MAA)...

Full description

Bibliographic Details
Main Authors: Rui Zhu, Renjie Chen, Yunxia Duo, Saigang Zhang, Delong Xie, Yi Mei
Format: Article
Language:English
Published: MDPI AG 2019-01-01
Series:Polymers
Subjects:
Online Access:http://www.mdpi.com/2073-4360/11/1/86
Description
Summary:A simple and versatile route for industrial scale synthesis of adipicdihydrazide (ADH)/polymer hybrids with excellent performance of formaldehyde degradation is proposed in this paper. The ADH compound is uniformly dispersed in poly(methyl methacrylate-butyl acrylate-methacrylic acid) (P(MMA-BA-MAA)) latex, which is validated by UV and dispersibility tests. The results illustrate that ADH has excellent compatibility and dispersion stability without affecting the film formation of the polymer latex. Furthermore, scanning electron microscope (SEM) and mapping analysis of the hybrid films also demonstrate that ADH is homogenously dispersed in the polymer matrix. Compared with neat polymers, the thermal properties of hybrid films are improved, for example, T0.5 increases by 8.3 °C. According to qualitative tests of the 4-amino-3-hydrazino-5-mercapto-1,2,4-triazol-red/green/blue (AHMT-RGB) method, the hybrid films demonstrate high formaldehyde removal efficiency. On the basis of the semi-quantitative test of Fourier Transform infrared spectroscopy (FTIR) measurements, the rate of formaldehyde degradation can reach 1.034 × 102 mol/(h·m3) for the hybrid film with 5 wt% ADH.
ISSN:2073-4360