Experimental Measurement of ECH Deposition Broadening: Beyond Anomalous Transport

This work provides a first experimental measurement of broadened ECH deposition on the DIIID tokamak. As seen in theory[1] and simulation[2], refraction by edge density fluctuations shifts the path of RF waves, altering ECH and ECCD deposition. This paper reports on an initial experimental confirmat...

Full description

Bibliographic Details
Main Authors: Brookman M. W., Austin M. E., Gentle K. W., Petty C. C., Ernst D. E., Peysson Y., Decker J., Barada K.
Format: Article
Language:English
Published: EDP Sciences 2017-01-01
Series:EPJ Web of Conferences
Online Access:https://doi.org/10.1051/epjconf/201714703001
Description
Summary:This work provides a first experimental measurement of broadened ECH deposition on the DIIID tokamak. As seen in theory[1] and simulation[2], refraction by edge density fluctuations shifts the path of RF waves, altering ECH and ECCD deposition. This paper reports on an initial experimental confirmation of broadened ECH deposition on DIII-D tokamak. Te measurements from a 48 channel 2nd Harmonic ECE Radiometer digitized at 500 kHz are used with a set of broadened trial ECH deposition functions to calculate time-dependent, modulation-induced heat fluxes. The fitting of convective and diffusive transport to these fluxes allows different ECH deposition profiles to be compared. The best-fit ECH deposition produces reasonable transport coefficients which compare favorably with simulation. This method is applied to a set of L- and H- mode DIII-D discharges. Accounting for diffusive, convective, and coupled transport, the ECH deposition profile is found to be 2 to 3 times wider than predicted by TORAY-GA ray tracing.
ISSN:2100-014X