Stabilizing gold nanoparticles for use in X-ray computed tomography imaging of soil systems

This investigation establishes a system of gold nanoparticles that show good colloidal stability as an X-ray computed tomography (XCT) contrast agent under soil conditions. Gold nanoparticles offer numerous beneficial traits for experiments in biology including: comparatively minimal phytotoxicity,...

Full description

Bibliographic Details
Main Authors: Callum P. Scotson, Maria Munoz-Hernando, Simon J. Duncan, Siul A. Ruiz, Samuel D. Keyes, Arjen van Veelen, Iain E. Dunlop, Tiina Roose
Format: Article
Language:English
Published: The Royal Society 2019-10-01
Series:Royal Society Open Science
Subjects:
Online Access:https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.190769
Description
Summary:This investigation establishes a system of gold nanoparticles that show good colloidal stability as an X-ray computed tomography (XCT) contrast agent under soil conditions. Gold nanoparticles offer numerous beneficial traits for experiments in biology including: comparatively minimal phytotoxicity, X-ray attenuation of the material and the capacity for functionalization. However, soil salinity, acidity and surface charges can induce aggregation and destabilize gold nanoparticles, hence in biomedical applications polymer coatings are commonly applied to gold nanoparticles to enhance stability in the in vivo environment. Here we first demonstrate non-coated nanoparticles aggregate in soil-water solutions. We then show coating with a polyethylene glycol (PEG) layer prevents this aggregation. To demonstrate this, PEG-coated nanoparticles were drawn through flow columns containing soil and were shown to be stable; this is in contrast with control experiments using silica and alumina-packed columns. We further determined that a suspension of coated gold nanoparticles which fully saturated soil maintained stability over at least 5 days. Finally, we used time resolved XCT imaging and image based models to approximate nanoparticle diffusion as similar to that of other typical plant nutrients diffusing in water. Together, these results establish the PEGylated gold nanoparticles as potential contrast agents for XCT imaging in soil.
ISSN:2054-5703