Improvement of Enantiomeric <span style="font-variant: small-caps">l</span>-Lactic Acid Production from Mixed Hexose-Pentose Sugars by Coculture of <i>Enterococcus mundtii</i> WX1 and <i>Lactobacillus rhamnosus</i> SCJ9

Among 39 pentose-utilizing lactic acid bacteria (LAB) selected from acid-forming bacteria from the midgut of Eri silkworm, the isolate WX1 was selected with the highest capability to produce optically pure <span style="font-variant: small-caps;">l</span>-lactic acid (<span s...

Full description

Bibliographic Details
Main Authors: Augchararat Klongklaew, Kridsada Unban, Apinun Kanpiengjai, Pairote Wongputtisin, Punnita Pamueangmun, Kalidas Shetty, Chartchai Khanongnuch
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Fermentation
Subjects:
Online Access:https://www.mdpi.com/2311-5637/7/2/95
_version_ 1797530635900813312
author Augchararat Klongklaew
Kridsada Unban
Apinun Kanpiengjai
Pairote Wongputtisin
Punnita Pamueangmun
Kalidas Shetty
Chartchai Khanongnuch
author_facet Augchararat Klongklaew
Kridsada Unban
Apinun Kanpiengjai
Pairote Wongputtisin
Punnita Pamueangmun
Kalidas Shetty
Chartchai Khanongnuch
author_sort Augchararat Klongklaew
collection DOAJ
description Among 39 pentose-utilizing lactic acid bacteria (LAB) selected from acid-forming bacteria from the midgut of Eri silkworm, the isolate WX1 was selected with the highest capability to produce optically pure <span style="font-variant: small-caps;">l</span>-lactic acid (<span style="font-variant: small-caps;">l</span>-LA) from glucose, xylose and arabinose with furfural-tolerant properties. The isolate WX1 was identified as <i>Enterococcus mundtii</i> based on 16S rDNA sequence analysis. The conversion yields of <span style="font-variant: small-caps;">l</span>-LA from glucose and xylose by <i>E. mundtii</i> WX1 were 0.97 and 0.68 g/g substrate, respectively. Furthermore, <span style="font-variant: small-caps;">l</span>-LA production by <i>E. mundtii</i> WX1 in various glucose-xylose mixtures indicated glucose repression effect on xylose consumption. The coculture of <i>E. mundtii</i> WX1 and <i>Lactobacillus rhamnosus</i> SCJ9, a homofermentative LAB capable of producing <span style="font-variant: small-caps;">l</span>-LA from glucose clearly showed an improvement of <span style="font-variant: small-caps;">l</span>-LA production from 30 g/L total glucose-xylose (6:4). The results from Plackett–Burman design (PBD) indicated that Tween 80, MnSO<sub>4</sub> and yeast extract (YE) were three medium components that significantly influenced (<i>p</i> < 0.05) <span style="font-variant: small-caps;">l</span>-LA production using the coculture strategy in the presence of 2 g/L furfural. Optimal concentrations of these variables revealed by central composite design (CCD) and response surface methodology (RSM) were 20.61 g/L YE, 1.44 g/L Tween 80 and 1.27 g/L MnSO<sub>4</sub>. Based on the optimized medium with 30 g/L total glucose-xylose (6:4), the maximum experimental <span style="font-variant: small-caps;">l</span>-LA value of 23.59 g/L reflecting 0.76 g/g substrate were achieved from 48 h fermentation at 37 °C. <span style="font-variant: small-caps;">l</span>-LA produced by coculture cultivated under standard MRS medium and new optimized conditions were 1.28 and 1.53 times higher than that obtained from single culture by <i>E. mundtii</i> WX1, respectively. This study provides the foundations for practical applications of coculture in bioconversion of lignocellulose particularly glucose-xylose-rich corn stover to <span style="font-variant: small-caps;">l</span>-LA.
first_indexed 2024-03-10T10:32:46Z
format Article
id doaj.art-f9431c0b66b8441fa37644c1406fa7dc
institution Directory Open Access Journal
issn 2311-5637
language English
last_indexed 2024-03-10T10:32:46Z
publishDate 2021-06-01
publisher MDPI AG
record_format Article
series Fermentation
spelling doaj.art-f9431c0b66b8441fa37644c1406fa7dc2023-11-21T23:35:10ZengMDPI AGFermentation2311-56372021-06-01729510.3390/fermentation7020095Improvement of Enantiomeric <span style="font-variant: small-caps">l</span>-Lactic Acid Production from Mixed Hexose-Pentose Sugars by Coculture of <i>Enterococcus mundtii</i> WX1 and <i>Lactobacillus rhamnosus</i> SCJ9Augchararat Klongklaew0Kridsada Unban1Apinun Kanpiengjai2Pairote Wongputtisin3Punnita Pamueangmun4Kalidas Shetty5Chartchai Khanongnuch6Interdisciplinary Program in Biotechnology, The Graduate School, Chiang Mai University, Chiang Mai 50200, ThailandDivision of Biotechnology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Muang, Chiang Mai 50100, ThailandDivision of Biochemistry and Biochemical Technology, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, ThailandProgram in Biotechnology, Faculty of Science, Maejo University, Chiang Mai 50290, ThailandInterdisciplinary Program in Biotechnology, The Graduate School, Chiang Mai University, Chiang Mai 50200, ThailandDepartment of Plant Sciences, Global Institute of Food Security and International Agriculture (GIFSIA), North Dakota State University, Fargo, ND 58108, USAInterdisciplinary Program in Biotechnology, The Graduate School, Chiang Mai University, Chiang Mai 50200, ThailandAmong 39 pentose-utilizing lactic acid bacteria (LAB) selected from acid-forming bacteria from the midgut of Eri silkworm, the isolate WX1 was selected with the highest capability to produce optically pure <span style="font-variant: small-caps;">l</span>-lactic acid (<span style="font-variant: small-caps;">l</span>-LA) from glucose, xylose and arabinose with furfural-tolerant properties. The isolate WX1 was identified as <i>Enterococcus mundtii</i> based on 16S rDNA sequence analysis. The conversion yields of <span style="font-variant: small-caps;">l</span>-LA from glucose and xylose by <i>E. mundtii</i> WX1 were 0.97 and 0.68 g/g substrate, respectively. Furthermore, <span style="font-variant: small-caps;">l</span>-LA production by <i>E. mundtii</i> WX1 in various glucose-xylose mixtures indicated glucose repression effect on xylose consumption. The coculture of <i>E. mundtii</i> WX1 and <i>Lactobacillus rhamnosus</i> SCJ9, a homofermentative LAB capable of producing <span style="font-variant: small-caps;">l</span>-LA from glucose clearly showed an improvement of <span style="font-variant: small-caps;">l</span>-LA production from 30 g/L total glucose-xylose (6:4). The results from Plackett–Burman design (PBD) indicated that Tween 80, MnSO<sub>4</sub> and yeast extract (YE) were three medium components that significantly influenced (<i>p</i> < 0.05) <span style="font-variant: small-caps;">l</span>-LA production using the coculture strategy in the presence of 2 g/L furfural. Optimal concentrations of these variables revealed by central composite design (CCD) and response surface methodology (RSM) were 20.61 g/L YE, 1.44 g/L Tween 80 and 1.27 g/L MnSO<sub>4</sub>. Based on the optimized medium with 30 g/L total glucose-xylose (6:4), the maximum experimental <span style="font-variant: small-caps;">l</span>-LA value of 23.59 g/L reflecting 0.76 g/g substrate were achieved from 48 h fermentation at 37 °C. <span style="font-variant: small-caps;">l</span>-LA produced by coculture cultivated under standard MRS medium and new optimized conditions were 1.28 and 1.53 times higher than that obtained from single culture by <i>E. mundtii</i> WX1, respectively. This study provides the foundations for practical applications of coculture in bioconversion of lignocellulose particularly glucose-xylose-rich corn stover to <span style="font-variant: small-caps;">l</span>-LA.https://www.mdpi.com/2311-5637/7/2/95lactic acid bacteriacoculturesilkworm<span style="font-variant: small-caps">l</span>-lactic acidmedium optimization
spellingShingle Augchararat Klongklaew
Kridsada Unban
Apinun Kanpiengjai
Pairote Wongputtisin
Punnita Pamueangmun
Kalidas Shetty
Chartchai Khanongnuch
Improvement of Enantiomeric <span style="font-variant: small-caps">l</span>-Lactic Acid Production from Mixed Hexose-Pentose Sugars by Coculture of <i>Enterococcus mundtii</i> WX1 and <i>Lactobacillus rhamnosus</i> SCJ9
Fermentation
lactic acid bacteria
coculture
silkworm
<span style="font-variant: small-caps">l</span>-lactic acid
medium optimization
title Improvement of Enantiomeric <span style="font-variant: small-caps">l</span>-Lactic Acid Production from Mixed Hexose-Pentose Sugars by Coculture of <i>Enterococcus mundtii</i> WX1 and <i>Lactobacillus rhamnosus</i> SCJ9
title_full Improvement of Enantiomeric <span style="font-variant: small-caps">l</span>-Lactic Acid Production from Mixed Hexose-Pentose Sugars by Coculture of <i>Enterococcus mundtii</i> WX1 and <i>Lactobacillus rhamnosus</i> SCJ9
title_fullStr Improvement of Enantiomeric <span style="font-variant: small-caps">l</span>-Lactic Acid Production from Mixed Hexose-Pentose Sugars by Coculture of <i>Enterococcus mundtii</i> WX1 and <i>Lactobacillus rhamnosus</i> SCJ9
title_full_unstemmed Improvement of Enantiomeric <span style="font-variant: small-caps">l</span>-Lactic Acid Production from Mixed Hexose-Pentose Sugars by Coculture of <i>Enterococcus mundtii</i> WX1 and <i>Lactobacillus rhamnosus</i> SCJ9
title_short Improvement of Enantiomeric <span style="font-variant: small-caps">l</span>-Lactic Acid Production from Mixed Hexose-Pentose Sugars by Coculture of <i>Enterococcus mundtii</i> WX1 and <i>Lactobacillus rhamnosus</i> SCJ9
title_sort improvement of enantiomeric span style font variant small caps l span lactic acid production from mixed hexose pentose sugars by coculture of i enterococcus mundtii i wx1 and i lactobacillus rhamnosus i scj9
topic lactic acid bacteria
coculture
silkworm
<span style="font-variant: small-caps">l</span>-lactic acid
medium optimization
url https://www.mdpi.com/2311-5637/7/2/95
work_keys_str_mv AT augchararatklongklaew improvementofenantiomericspanstylefontvariantsmallcapslspanlacticacidproductionfrommixedhexosepentosesugarsbycocultureofienterococcusmundtiiiwx1andilactobacillusrhamnosusiscj9
AT kridsadaunban improvementofenantiomericspanstylefontvariantsmallcapslspanlacticacidproductionfrommixedhexosepentosesugarsbycocultureofienterococcusmundtiiiwx1andilactobacillusrhamnosusiscj9
AT apinunkanpiengjai improvementofenantiomericspanstylefontvariantsmallcapslspanlacticacidproductionfrommixedhexosepentosesugarsbycocultureofienterococcusmundtiiiwx1andilactobacillusrhamnosusiscj9
AT pairotewongputtisin improvementofenantiomericspanstylefontvariantsmallcapslspanlacticacidproductionfrommixedhexosepentosesugarsbycocultureofienterococcusmundtiiiwx1andilactobacillusrhamnosusiscj9
AT punnitapamueangmun improvementofenantiomericspanstylefontvariantsmallcapslspanlacticacidproductionfrommixedhexosepentosesugarsbycocultureofienterococcusmundtiiiwx1andilactobacillusrhamnosusiscj9
AT kalidasshetty improvementofenantiomericspanstylefontvariantsmallcapslspanlacticacidproductionfrommixedhexosepentosesugarsbycocultureofienterococcusmundtiiiwx1andilactobacillusrhamnosusiscj9
AT chartchaikhanongnuch improvementofenantiomericspanstylefontvariantsmallcapslspanlacticacidproductionfrommixedhexosepentosesugarsbycocultureofienterococcusmundtiiiwx1andilactobacillusrhamnosusiscj9