The Double Roman Domination Numbers of Generalized Petersen Graphs P(n, 2)

A double Roman dominating function (DRDF) f on a given graph G is a mapping from V ( G ) to { 0 , 1 , 2 , 3 } in such a way that a vertex u for which f ( u ) = 0 has at least a neighbor labeled 3 or two neighbors both labeled 2 and a vertex u for which f ( u ) = 1 has...

Full description

Bibliographic Details
Main Authors: Huiqin Jiang, Pu Wu, Zehui Shao, Yongsheng Rao, Jia-Bao Liu
Format: Article
Language:English
Published: MDPI AG 2018-10-01
Series:Mathematics
Subjects:
Online Access:http://www.mdpi.com/2227-7390/6/10/206
Description
Summary:A double Roman dominating function (DRDF) f on a given graph G is a mapping from V ( G ) to { 0 , 1 , 2 , 3 } in such a way that a vertex u for which f ( u ) = 0 has at least a neighbor labeled 3 or two neighbors both labeled 2 and a vertex u for which f ( u ) = 1 has at least a neighbor labeled 2 or 3. The weight of a DRDF f is the value w ( f ) = ∑ u ∈ V ( G ) f ( u ) . The minimum weight of a DRDF on a graph G is called the double Roman domination number γ d R ( G ) of G. In this paper, we determine the exact value of the double Roman domination number of the generalized Petersen graphs P ( n , 2 ) by using a discharging approach.
ISSN:2227-7390